Non-Asymptotic Analysis of a UCB-based Top Two Algorithm

Marc Jourdan and Rémy Degenne

November 3, 2023

Goal: Identify the item having the highest averaged return with a given confidence.

Typical guaranty: Asymptotic optimality of the algorithm as regards the expected sample complexity.

△ Not informative for moderate confidence level !

This paper:

UCB-based Top Two Algorithm with sample complexity upper bounds for any confidence level !

Best-arm identification (BAI)

K arms: arm $i \in [K]$ is associated with a Gaussian $\mathcal{N}(\mu_i, 1)$.

Goal: identify $i^* = \arg \max_{i \in [K]} \mu_i$ with confidence $1 - \delta \in (0, 1)$.

Algorithm: at time *n*,

• Sequential test: if the stopping time τ_{δ} is reached, then return the candidate answer \hat{i}_n , else

• Sampling rule: pull arm I_n and observe $X_n \sim \mathcal{N}(\mu_{I_n}, 1)$.

Objective: Minimize $\mathbb{E}_{\mu}[\tau_{\delta}]$ for δ -correct algorithms,

$$\mathbb{P}_{\mu}(\tau_{\delta} < +\infty, \hat{i}_{\tau_{\delta}} \neq i^{\star}) \leq \delta .$$

(Garivier and Kaufmann, 2016) For all $\delta\text{-correct}$ algorithms,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\log(1/\delta)} \ge T^{\star}(\mu) = \min_{\beta \in (0,1)} T^{\star}_{\beta}(\mu) .$$

3/8

- ? How to obtain a δ -correct sequential test for Gaussians ?
- **GLR stopping rule**: recommend $\hat{i}_n \in \arg \max_{i \in [K]} \mu_{n,i}$ and

$$\tau_{\delta} = \inf\{n > K \mid \min_{i \neq \hat{\imath}_n} \frac{\mu_{n,\hat{\imath}_n} - \mu_{n,i}}{\sqrt{1/N_{n,\hat{\imath}_n} + 1/N_{n,i}}} \ge \sqrt{2c(n-1,\delta)}\}.$$
 (1)

 $(N_{n,i}, \mu_{n,i})$: pulling count and empirical mean of arm *i* before time *n*

TTUCB: UCB-based Top Two sampling rule

Input: proportion $\beta \in (0,1)$ and $g : \mathbb{N} \to \mathbb{R}^+$, e.g. $\beta = 1/2$ and $g_u(n) = \Theta(\log n)$.

Get the UCB leader $B_n = \arg \max_{i \in [K]} \{\mu_{n,i} + \sqrt{g(n)/N_{n,i}}\};$

Get the TC challenger $C_n \in \arg \min_{i \neq B_n} \frac{(\mu_{n,B_n} - \mu_{n,i})_+}{\sqrt{1/N_{n,B_n} + 1/N_{n,i}}}$;

Tracking: get $I_n = B_n$ if $N_{n,B_n}^{B_n} \leq \beta L_{n+1,B_n}$, otherwise $I_n = C_n$;

Output: next arm to sample I_n .

 $L_{n,i}$: number of selection of arm *i* as leader before time *n*. $N_{n,j}^i$: number of pulls of arm *j* when arm *i* is leader before time *n*.

Upper bounds on the expected sample complexity

Theorem

 $\delta \rightarrow 0$: Combined with GLR stopping (1), TTUCB is δ -correct and asymptotically β -optimal for all instances having distinct means, i.e.

$$\limsup_{\delta \to 0} \mathbb{E}_{\mu}[\tau_{\delta}] / \log(1/\delta) \le T_{\beta}^{\star}(\mu) .$$

 $\delta \in (0, 1)$: TTUCB with $\beta = 1/2$ and g_u satisfies that, for all instances having a **unique best arm**,

$$\mathbb{E}_{\mu}[\tau_{\delta}] \leq \inf_{x \in [0, (K-1)^{-1}]} \max\left\{ T_0(\delta, x), C_{\mu}^{1.2}, C_0(x)^6, (2/\varepsilon)^{1.2} \right\} + 12K ,$$

where $\varepsilon \in (0, 1]$, $\limsup_{\delta \to 0} T_0(\delta, 0) / \log(1/\delta) \le 2T^{\star}_{1/2}(\mu)$ and $C_{\mu} = \mathcal{O}(H(\mu) \log H(\mu))$ with $H(\mu) = 2\Delta_{\min}^{-2} + \sum_{i \neq i^{\star}} 2(\mu_{i^{\star}} - \mu_i)^{-2}$.

Empirical results

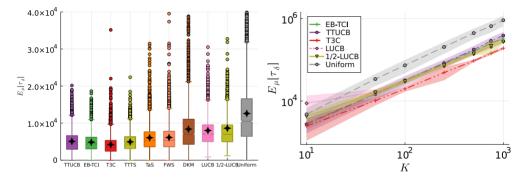


Figure: Empirical stopping time for $\delta = 0.1$ on (a) random instances with $\mu_1 = 0.6$ and $\mu_i \sim \mathcal{U}([0.2, 0.5])$ for $i \neq 1$ (K = 10) and (b) "1-sparse" instances $\mu_1 = 0.25$ and $\mu_i = 0$ otherwise.

- First non-asymptotic analysis of Top Two algorithms, which holds for instances having a unique best arm.
- Oeterministic asymptotically β-optimal Top Two algorithm using UCB leader and tracking instead of randomization.

Paper & Poster

