

Motivation

Goal: Identify the item having the highest averaged return with a given confidence.

Typical guaranty: Asymptotic optimality of the expected sample complexity.

 \triangle Not informative for moderate confidence level !

This paper: sample complexity upper bounds for any confidence level !

Best-arm identification (BAI)

K arms: arm $i \in [K]$ is associated with a Gaussian distribution $\mathcal{N}(\mu_i, 1)$.

Goal: identify $i^* = \arg \max_{i \in [K]} \mu_i$ with confidence $1 - \delta \in (0, 1)$.

Algorithm: at time n,

• Sequential test: if the stopping time τ_{δ} is reached, then return the candidate answer $\hat{\imath}_n$, else

• Sampling rule: pull arm I_n and observe $X_n \sim \mathcal{N}(\mu_{I_n}, 1)$.

Fixed-confidence: given an confidence $\delta \in (0, 1)$, define a stopping time τ_{δ} which is δ -correct, i.e. $\mathbb{P}_{\mu}(\tau_{\delta} < +\infty, \hat{\imath}_{\tau_{\delta}} \neq i^{\star}) \leq \delta$, and Minimize the expected sample complexity $\mathbb{E}_{\mu}[\tau_{\delta}]$.

Lower bound on the expected sample complexity

? What is the best one could achieve ?

Solution Garivier and Kaufmann (2016): For all δ -correct algorithms and all Gaussian instances with $\mu \in \mathbb{R}^{K}$, $\liminf_{\delta \to 0} \mathbb{E}_{\mu}[\tau_{\delta}] / \log(1/\delta) \geq T^{\star}(\mu)$ where

 $T^{\star}(\mu) = \min_{\beta \in (0,1)} T^{\star}_{\beta}(\mu) \quad \text{and} \quad T^{\star}_{\beta}(\mu)^{-1} = \max_{w \in \Delta_{K}, w_{i^{\star}} = \beta} \min_{j \neq i^{\star}} \frac{1}{2} \frac{(\mu_{i^{\star}} - \mu_{j})^{2}}{1/\beta + 1/w_{j}} \,.$

TTUCB: UCB-based Top Two sampling rule

Input: fixed proportion $\beta \in (0, 1)$ and function $g : \mathbb{N} \to \mathbb{R}^+$.

Get the UCB leader $B_n = \arg \max_{i \in [K]} \{\mu_{n,i} + \sqrt{g(n)/N_{n,i}}\};$

Get the TC challenger $C_n \in \arg\min_{i \neq B_n} \frac{(\mu_{n,B_n} - \mu_{n,i})_+}{\sqrt{1/N_{n,B_n} + 1/N_{n,i}}};$

Use tracking to get $I_n = B_n$ if $N_{n,B_n}^{B_n} \leq \beta L_{n+1,B_n}$, otherwise $I_n = C_n$; **Output**: next arm to sample I_n .

 $(N_{n,i}, \mu_{n,i})$: number of pulls and empirical mean of arm *i* before time *n*. $L_{n,i}$: number of selection of arm *i* as leader before time *n*. $N_{n,j}^i$: number of pulls of arm j when arm i is leader before time n.

- Take $\beta = 1/2$ since $w^*(\mu)_{i^*} \le 1/2$ and $T^*_{1/2}(\mu)/T^*(\mu) \ll 2$ for most instances.
- Choose small g s.t. $\mathbb{P}_{\mu}(\mathcal{E}_n) \geq 1 Kn^{-s}$ with

$$\mathcal{E}_n = \{ \forall (t,i) \in [n^{1/\alpha}] \times [K], \ \mu_i \in [\mu_{t,i} \pm \sqrt{g(t)/N_{t,i}} \}$$

where $\alpha, s > 1$, e.g. $g_u(n) = 2\alpha(1+s)\log n$.

Non-Asymptotic Analysis of a **UCB-based Top Two Algorithm** Marc Jourdan and Rémy Degenne Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189-CRIStAL, F-59000 Lille, France

δ -correct sequential test

How to obtain a δ -correct sequential test for Gaussian distributions ?

GLR stopping rule: recommend $\hat{i}_n \in \arg \max_{i \in [K]} \mu_{n,i}$ and stop at time

$$\tau_{\delta} = \inf\{n > K \mid \min_{i \neq \hat{\imath}_n} \frac{\mu_{n,\hat{\imath}_n} - \mu_{n,i}}{\sqrt{1/N_{n,\hat{\imath}_n} + 1/N}}$$

with $c(n, \delta) \simeq \log(1/\delta) + 2\log\log(1/\delta) + 4\log(4 + \log(n/2))$.

Asymptotic confidence guarantees

Theorem 1. Let $(\delta, \beta) \in (0, 1)^2$. Combined with GLR stopping (1), the TTUCB algorithm is δ -correct and asymptotically β -optimal for all $\mu \in \mathbb{R}^K$ having distinct means, i.e. it satisfies $\limsup_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\delta}] / \log(1/\delta) \leq T_{\beta}^{\star}(\mu)$.

Limitations: no guarantees (1) for **moderate regime** of δ and (2) when suboptimal arms share the **same mean**.

Finite confidence guarantees

Theorem 2. Let $\delta \in (0,1)$. Combined with GLR stopping (1), the TTUCB algorithm using $\beta = 1/2$ and g_u with $\alpha = s = 1.2$ satisfies that, for all $\mu \in \mathbb{R}^K$ such that $|i^{\star}(\mu)| = 1$,

$$\mathbb{E}_{\mu}[\tau_{\delta}] \le \inf_{x \in [0, (K-1)^{-1}]} \max\left\{T_0(\delta, x), C_{\mu}^{1.2}, 0\right\}$$

where $\varepsilon \in (0, 1]$ and

 $C_{\mu} = \mathcal{O}\left(H(\mu)\log H(\mu)\right)$ with $H(\mu) = 2\Delta_{\min}^{-2}$

 $\limsup T_0(\delta, 0) / \log(1/\delta) \le 2T_{1/2}^{\star}(\mu) ,$

 $C_0(x) = 2/(\varepsilon a_\mu(x)) + 1$ with $a_\mu(x) = (1-x)^{d_\mu(x)} \max\{\min_{i \neq i^\star} w_{1/2}^\star(\mu)_i, x/2\}$

and $d_{\mu}(x) = |\{i \neq i^{\star} \mid w_{1/2}^{\star}(\mu)_i < x/2\}|.$

Refined analysis: Clipping $\min_{i \neq i^*} w_{1/2}^*(\mu)_i$ by x/2 yields $C_0(x) = \mathcal{O}(K/\varepsilon)$.

Generic method that **improves the analysis of APT** (Locatelli et al, 2016).

Table 1: Upper bound on the sample complexity τ_{δ} in probability (§) or in expectation (†). The notation $\tilde{\mathcal{O}}$ hides polylogarithmic factors. (*) Upper bound on $\mathbb{E}_{\mu}[\tau_{\delta}\mathbb{1}(\mathcal{E})]$ where $\mathbb{P}[\mathcal{E}^{C}] \leq \gamma$. (**) Asymptotic bound holds for instances with distinct means. Ordered references: Kalyanakrishnan et al. (2012), Karnin et al. (2013), Jamieson et al. (2014), Degenne et al. (2019), Katz-Samuels et al. (2020), Wang et al. (2021), Barrier et al. (2022).

Algorithm	Asymptotic $\delta \to 0$
LUCB1†	$\mathcal{O}\left(H(\mu)\log(1/\delta) ight)$
Exp-Gap§	$\mathcal{O}\left(H(\mu)\log(1/\delta) ight)$
lil' UCB§	$\mathcal{O}\left(H(\mu)\log(1/\delta) ight)$
DKM†	$T^{\star}(\mu)\log(1/\delta) + \tilde{\mathcal{O}}(\sqrt{\log(1/\delta)})$
Peace §	$\mathcal{O}\left(T^{\star}(\mu)\log(1/\delta) ight)$
FWS†	$T^{\star}(\mu)\log(1/\delta) + \mathcal{O}(\log\log(1/\delta))$
EBS†*	$T^{\star}(\mu)\log(1/\delta) + o(1)$
TTUCB†**	$T^{\star}_{\beta}(\mu)\log(1/\delta) + \mathcal{O}(\log\log(1/\delta))$

 $= \geq \sqrt{2c(n-1,\delta)} \,,$ (1)

 $, C_0(x)^6, (2/\varepsilon)^{1.2} \} + 12K ,$

$$+\sum_{i\neq i^{\star}} 2(\mu_{i^{\star}}-\mu_i)^{-2},$$

Finite δ when $H(\mu) \rightarrow +\infty$ $\mathcal{O}\left(H(\mu)\log H(\mu)\right)$ $\mathcal{O}(\sum_{i \neq i^{\star}} \Delta_i^{-2} \log \log \Delta_i^{-1})$ $\mathcal{O}(\sum_{i \neq i^{\star}}^{\cdot} \Delta_i^{-2} \log \log \Delta_i^{-1})$ $\mathcal{O}\left(KT^{\star}(\mu)^{2}\right)$ $\mathcal{O}\left(H(\mu)\log(K/\Delta_{\min})\right)$ $\mathcal{O}\left(e^{K}H(\mu)^{19/2}\right)$ $\mathcal{O}\left(KH(\mu)^4/w_{\min}^2\right)$ $\mathcal{O}\left(\left(H(\mu)\log H(\mu)\right)^{\alpha}\right)$

Tracking instead of randomization

- Fully deterministic algorithm.
- Deterministic counts simplifies the non-asymptotic analysis.

Lemma 1. For all n > K and all $i \in [K]$, we have $-1/2 \leq N_{n,i}^i - \beta L_{n,i} \leq 1$.

Generic regret minimizing leader

The Top Two method is a generic wrapper to convert any regret minimization algorithm into a best arm identification strategy.

Sufficient condition: Arm i^* is leader except for a sublinear number of times.

▶ Upper bound $(N_{n,i})_{i \neq i^*}$ or $\sum_{i \neq i^*} \Delta_i N_{n,i}$ under a concentration event.

Lemma 2 (UCB). Under \mathcal{E}_n , we have $L_{n,i^*} \ge n - 24H(\mu)\log n - 2K - 1$.

Conclusion

- stances having a unique best arm.
- and tracking instead of randomization.

• Faster convergence of $N_{n,i^*}/n$ to β , at least in $\mathcal{O}(1/n)$ instead of $\mathcal{O}(1/\sqrt{n})$.

Figure 2: Empirical stopping time for $\delta = 0.1$ on "1-sparse" instances: (a) $(K, \mu_{i^*}, \Delta) = (35, 0, 0.5)$ with $T^{\star}_{1/2}(\mu)/T^{\star}(\mu) \approx 3/2$ and (b) $(\mu_{i^{\star}}, \Delta) = (0, 0.25)$ with $H(\mu) = \Theta(K)$. Constant $\beta = 1/2$ and adaptive proportions (A-), IDS (You et al., 2023) sets $\beta_n = N_{n,C_n}/(N_{n,C_n} + N_{n,B_n})$.

First non-asymptotic analysis of Top Two algorithms, which holds for in-

2. Deterministic asymptotically β -optimal Top Two algorithm using UCB leader