Motivation

Goal: Identify the item having the highest averaged return with a given confidence.
Typical guaranty: Asymptotic optimality of the expected sample complexity.
\triangle Not informative for moderate confidence level !
This paper: sample complexity upper bounds for any confidence level

Best-arm identification (BAI)

K arms: arm $i \in[K]$ is associated with a Gaussian distribution $\mathcal{N}\left(\mu_{i}, 1\right)$.
Goal: identify $i^{\star}=\arg \max _{i \in[K]} \mu_{i}$ with confidence $1-\delta \in(0,1)$.
Algorithm: at time n

- Sequential test: if the stopping time τ_{δ} is reached, then return the candidate answer $\hat{\imath}_{n}$, else
- Sampling rule: pull arm I_{n} and observe $X_{n} \sim \mathcal{N}\left(\mu_{I_{n}}, 1\right)$.

Fixed-confidence: given an confidence $\delta \in(0,1)$, define a stopping time τ_{δ} which is δ-correct, i.e. $\mathbb{P}_{\mu}\left(\tau_{\delta}<+\infty, \hat{\imath}_{\tau_{\delta}} \neq i^{\star}\right) \leq \delta$, and
Minimize the expected sample complexity $\mathbb{E}_{\mu}\left[\tau_{\delta}\right]$

Lower bound on the expected sample complexity

? What is the best one could achieve ?
Garivier and Kaufmann (2016): For all δ-correct algorithms and all Gaussian instances with $\mu \in \mathbb{R}^{K}, \lim _{\inf }^{\delta \rightarrow 0} \mathbb{E}_{\mu}\left[\tau_{\delta}\right] / \log (1 / \delta) \geq T^{\star}(\mu)$ wher

$$
T^{\star}(\mu)=\min _{\beta \in(0,1)} T_{\beta}^{\star}(\mu) \quad \text { and } \quad T_{\beta}^{\star}(\mu)^{-1}=\max _{w \in \Delta_{K}, w_{i^{\star}}=\beta} \min _{j \neq i^{\star}} \frac{1}{2} \frac{\left(\mu_{i^{\star}}-\mu_{j}\right)^{2}}{1 / \beta+1 / w_{j}}
$$

TTUCB: UCB-based Top Two sampling rule

Input: fixed proportion $\beta \in(0,1)$ and function $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$
Get the UCB leader $B_{n}=\arg \max _{i \in[K]}\left\{\mu_{n, i}+\sqrt{g(n) / N_{n, i}}\right\}$;
Get the TC challenger $C_{n} \in \arg \min _{i \neq B_{n}} \frac{\left(\mu_{n, B_{n}}-\mu_{n, i}\right)_{+}}{\sqrt{1 / N_{n, B_{n}}+1 / N_{n, i}}}$
Use tracking to get $I_{n}=B_{n}$ if $N_{n, B_{n}}^{B_{n}} \leq \beta L_{n+1, B_{n}}$, otherwise $I_{n}=C_{n}$;
Output: next arm to sample I_{n}
$\left.N_{n, i}, \mu_{n, i}\right)$: number of pulls and empirical mean of arm i before time n $L_{n, i}$: number of selection of arm i as leader before time n.
$N_{n, j}$: number of pulls of arm j when arm i is leader before time n.

- Take $\beta=1 / 2$ since $w^{\star}(\mu)_{i^{\star}} \leq 1 / 2$ and $T_{1 / 2}^{\star}(\mu) / T^{\star}(\mu) \ll 2$ for most instances - Choose small g s.t. $\mathbb{P}_{\mu}\left(\mathcal{E}_{n}\right) \geq 1-K n^{-s}$ with

$$
\mathcal{E}_{n}=\left\{\forall(t, i) \in\left[n^{1 / \alpha}\right] \times[K], \mu_{i} \in\left[\mu_{t, i} \pm \sqrt{g(t) / N_{t, i}}\right]\right\}
$$

where $\alpha, s>1$, e.g. $g_{u}(n)=2 \alpha(1+s) \log n$

Non-Asymptotic Analysis of a UCB-based Top Two Algorithm
 Marc Jourdan and Rémy Degenne

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189-CRIStAL, F-59000 Lille, France

CnIS

δ-correct sequential test

? How to obtain a δ-correct sequential test for Gaussian distributions ? GLR stopping rule: recommend $\hat{\imath}_{n} \in \arg \max _{i \in[K]} \mu_{n, i}$ and stop at time

$$
\tau_{\delta}=\inf \left\{n>K \left\lvert\, \min _{i \neq \hat{\imath}_{n}} \frac{\mu_{n, \hat{\imath}_{n}}-\mu_{n, i}}{\sqrt{1 / N_{n, \hat{\imath}_{n}}+1 / N_{n, i}}} \geq \sqrt{2 c(n-1, \delta)}\right.\right\}
$$

with $c(n, \delta) \simeq \log (1 / \delta)+2 \log \log (1 / \delta)+4 \log (4+\log (n / 2))$,

Asymptotic confidence guarantees

Theorem 1. Let $(\delta, \beta) \in(0,1)^{2}$. Combined with GLR stopping (1), the TTUCB algorithm is δ-correct and asymptotically β-optimal for all $\mu \in \mathbb{R}^{K}$ having distinct means, i.e. it satisfies $\lim \sup _{\delta \rightarrow 0} \mathbb{E}_{\nu}\left[\tau_{\delta}\right] / \log (1 / \delta) \leq T_{\beta}^{\star}(\mu)$
Limitations: no guarantees (1) for moderate regime of δ and (2) when sub optimal arms share the same mean.

Finite confidence guarantees

Theorem 2. Let $\delta \in(0,1)$. Combined with GLR stopping (1), the TTUCB algo rithm using $\beta=1 / 2$ and g_{u} with $\alpha=s=1.2$ satisfies that, for all $\mu \in \mathbb{R}^{K}$ such that $\left|i^{\star}(\mu)\right|=1$,

$$
\mathbb{E}_{\mu}\left[\tau_{\delta}\right] \leq \inf _{x \in\left[0,(K-1)^{-1}\right]} \max \left\{T_{0}(\delta, x), C_{\mu}^{1.2}, C_{0}(x)^{6},(2 / \varepsilon)^{1.2}\right\}+12 K
$$

where $\varepsilon \in(0,1]$ and

$$
C_{\mu}=\mathcal{O}(H(\mu) \log H(\mu)) \quad \text { with } \quad H(\mu)=2 \Delta_{\min }^{-2}+\sum_{i \neq i^{\star}} 2\left(\mu_{i^{\star}}-\mu_{i}\right)^{-2}
$$

$\limsup _{\delta \rightarrow 0} T_{0}(\delta, 0) / \log (1 / \delta) \leq 2 T_{1 / 2}^{\star}(\mu)$,
$C_{0}(x)=2 /\left(\varepsilon a_{\mu}(x)\right)+1 \quad$ with $\quad a_{\mu}(x)=(1-x)^{d_{\mu}(x)} \max \left\{\min _{i \neq i^{i}} w_{1 / 2}^{\star}(\mu)_{i}, x / 2\right\}$
and $d_{\mu}(x)=\left|\left\{i \neq i^{\star} \mid w_{1 / 2}^{\star}(\mu)_{i}<x / 2\right\}\right|$.
Refined analysis: Clipping $\min _{i \neq i \star} w_{1 / 2}^{\star}(\mu)_{i}$ by $x / 2$ yields $C_{0}(x)=\mathcal{O}(K / \varepsilon)$
Generic method that improves the analysis of APT (Locatelli et al, 2016).
Table 1: Upper bound on the sample complexity τ_{δ} in probability (§) or in expectation ((\dagger). The notation
$\tilde{\mathcal{O}}$ hides polylogarithmic factors. $\tilde{\mathcal{O}}$ hides polylogarithmic factors. (${ }^{*}$) Upper bound on $\mathbb{E}_{\mu}\left[\tau_{\delta} \mathbb{1}(\mathcal{E})\right]$ where $\mathbb{P}\left[\mathcal{E}^{\complement}\right] \leq \gamma$. ${ }^{\left({ }^{* *}\right) \text { Asymptotic }}$ Karnin et al. (2013), Jamieson et al. (2014), Degenne et al. (2019), Katz-Samuels et al. (2020), Wang et al. (2021), Barrier et al. (2022).

Algorithm	Asymptotic $\delta \rightarrow 0$	Finite δ when $H(\mu) \rightarrow+\infty$
LUCB1 \dagger	$\mathcal{O}(H(\mu) \log (1 / \delta))$	$\mathcal{O}(H(\mu) \log H(\mu))$
Exp-Gap \S	$\mathcal{O}(H(\mu) \log (1 / \delta))$	$\mathcal{O}\left(\sum_{i \neq i^{\star}} \Delta_{i}^{-2} \log \log \Delta_{i}^{-1}\right)$
lil' UCB \S	$\mathcal{O}(H(\mu) \log (1 / \delta))$	$\mathcal{O}\left(\sum_{i \neq i^{\star}} \Delta_{i}^{-2} \log \log \Delta_{i}^{-1}\right)$
DKM \dagger	$T^{\star}(\mu) \log (1 / \delta)+\tilde{\mathcal{O}}(\sqrt{\log (1 / \delta)})$	$\tilde{\mathcal{O}}\left(K T^{\star}(\mu)^{2}\right)$
Peace \S	$\mathcal{O}\left(T^{\star}(\mu) \log (1 / \delta)\right)$	$\mathcal{O}\left(H(\mu) \log \left(K / \Delta_{\min }\right)\right)$
FWS \dagger	$T^{\star}(\mu) \log (1 / \delta)+\mathcal{O}(\log \log (1 / \delta))$	$\mathcal{O}\left(e^{K} H(\mu)^{19 / 2}\right)$
EBS \dagger^{\star}	$T^{\star}(\mu) \log (1 / \delta)+o(1)$	$\mathcal{O}\left(K H(\mu)^{4} / w_{\min }^{2}\right)$
TTUCB $\dagger^{\star \star}$	$T_{\beta}^{\star}(\mu) \log (1 / \delta)+\mathcal{O}(\log \log (1 / \delta))$	$\mathcal{O}\left((H(\mu) \log H(\mu))^{\alpha}\right)$

Tracking instead of randomization

- Fully deterministic algorithm
- Deterministic counts simplifies the non-asymptotic analysis
- Faster convergence of $N_{n, i^{\star}} / n$ to β, at least in $\mathcal{O}(1 / n)$ instead of $\mathcal{O}(1 / \sqrt{n})$.

Lemma 1. For all $n>K$ and all $i \in[K]$, we have $-1 / 2 \leq N_{n, i}^{i}-\beta L_{n, i} \leq 1$.

Generic regret minimizing leader

The Top Two method is a generic wrapper to convert any regret minimization algorithm into a best arm identification strategy.
Sufficient condition: Arm i^{\star} is leader except for a sublinear number of times Upper bound $\left(N_{n, i}\right)_{i \neq i^{\star}}$ or $\sum_{i \neq i^{\star}} \Delta_{i} N_{n, i}$ under a concentration event

Lemma 2 (UCB). Under \mathcal{E}_{n}, we have $L_{n, i^{\star}} \geq n-24 H(\mu) \log n-2 K-1$

Experiments

Figure 1: Empirical stopping time for $\delta=0.1$ on (a) random instances with $\mu_{1}=0.6$ and μ_{i} $\mathcal{U}([0.2,0.5])$ for $i \neq 1(K=10)$ and (b) instances $\mu_{i}=1-\left(\frac{i-1}{K-1}\right)^{0.6}$ with $H(\mu)=\Theta\left(K^{1.2}\right)$,

Figure 2: Empirical stopping time for $\delta=0.1$ on "1-sparse" instances: (a) $\left(K, \mu_{i^{*}}, \Delta\right)=(35,0,0.5)$ with $T_{1 / 2}^{\star}(\mu) / T^{\star}(\mu) \approx 3 / 2$ and (b) $\left(\mu_{i^{\star}}, \Delta\right)=(0,0.25)$ with $H(\mu)=\Theta(K)$. Constant $\beta=1 / 2$ and adaptive proportions (A-), IDS (You et al., 2023) sets $\beta_{n}=N_{n, C_{n}} /\left(N_{n, C_{n}}+N_{n, B_{n}}\right)$.

Conclusion

. First non-asymptotic analysis of Top Two algorithms, which holds for instances having a unique best arm.
2. Deterministic asymptotically β-optimal Top Two algorithm using UCB leader and tracking instead of randomization.

