An ε -Best-Arm Identification Algorithm for Fixed-Confidence and Beyond

Marc Jourdan, Rémy Degenne and Émilie Kaufmann

November 3, 2023

Goal: Identify one item that has a good enough average return.

Two main approaches:

• **fixed-confidence**, control the error and minimize the sampling budget or

• fixed-budget, control the sampling budget and minimize the error.

▲ Too restrictive for many applications !

This paper: guarantees at any time on the candidate answer !

ε -Best-arm identification (ε -BAI)

K arms: arm $i \in [K]$ with ν_i is a 1-sub-Gaussian with mean μ_i .

Goal: identify one ε -good arm $\mathcal{I}_{\varepsilon}(\mu) = \{i \mid \mu_i \geq \max_j \mu_j - \varepsilon\}.$

Algorithm: at time n,

- Recommendation rule: recommend the candidate answer $\hat{\imath}_n$
- Sampling rule: pull arm I_n and observe $X_n \sim \nu_{I_n}$.

Fixed-confidence: given an error/confidence pair (ε, δ) , define an (ε, δ) -PAC stopping time $\tau_{\varepsilon,\delta}$, i.e. $\mathbb{P}_{\nu}(\tau_{\varepsilon,\delta} < +\infty, \hat{\imath}_{\tau_{\varepsilon,\delta}} \notin \mathcal{I}_{\varepsilon}(\mu)) \leq \delta$, Minimize the **expected sample complexity** $\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]$.

Fixed-budget: given an error/budget pair (ε, T) , Minimize the **probablity of** ε -error $\mathbb{P}_{\nu}(\hat{\imath}_T \notin \mathcal{I}_{\varepsilon}(\mu))$ at time T.

Anytime: Control the simple regret $\mathbb{E}_{\nu}[\max_{j} \mu_{j} - \mu_{\hat{i}_{n}}]$ at any time *n*.

Top Two sampling rule: EB-TC_{ε_0}, fixed β or IDS

$$\begin{array}{l} \text{nput: slack } \varepsilon_0 > 0, \text{ proportion } \beta \in (0,1) \text{ (only for fixed)}. \\ \text{Set } \hat{\imath}_n \in \arg\max_{i \in [K]} \mu_{n,i}; \\ \text{Set } B_n = \hat{\imath}_n \text{ and } C_n \in \arg\min_{i \neq B_n} \frac{\mu_{n,B_n} - \mu_{n,i} + \varepsilon_0}{\sqrt{1/N_{n,B_n} + 1/N_{n,i}}}; \\ \text{Update } \bar{\beta}_{n+1}(B_n, C_n) \text{ where } \beta_n(i,j) = \begin{cases} \beta & \text{[fixed]} \\ \frac{N_{n,j}}{N_{n,i} + N_{n,j}} & \text{[IDS]} \end{cases}; \\ \text{Tracking: } I_n = \begin{cases} C_n & \text{if } N_{n,C_n}^{B_n} \leq (1 - \bar{\beta}_{n+1}(B_n, C_n))T_{n+1}(B_n, C_n) \\ B_n & \text{otherwise} \end{cases}; \end{cases}$$

Output: next arm to sample I_n and next recommendation \hat{i}_n .

 $(N_{n,i}, \mu_{n,i})$: pulling count and empirical mean of arm i before time n. $T_n(i,j)$: selection count of the leader/challenger pair (i,j) before time n. $\overline{\beta}_n(i,j)$: average proportion when selecting (i,j) before time n. $N_{n,j}^i$: pulling count of arm j when selecting pair (i,j) before time n.

Fixed-confidence guarantees

(Degenne and Koolen, 2019) For all (ε, δ) -PAC algorithms,

$$\liminf_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}] / \log(1/\delta) \ge T_{\varepsilon}(\mu) .$$

GLR_{ε} stopping rule: recommend $\hat{i}_n \in \arg \max_{i \in [K]} \mu_{n,i}$ and

$$\tau_{\varepsilon,\delta} = \inf\{n > K \mid \min_{i \neq \hat{\imath}_n} \frac{\mu_{n,\hat{\imath}_n} - \mu_{n,i} + \varepsilon}{\sqrt{1/N_{n,\hat{\imath}_n} + 1/N_{n,i}}} \ge \sqrt{2c(n-1,\delta)}\}.$$
 (1)

Theorem

Let $\varepsilon > 0$. Combined with GLR_{ε} stopping (1), EB-TC_{ε} with IDS (resp. fixed β) proportions is **asymptotically** (resp. β -)**optimal** in fixed-confidence ε -BAI for Gaussian distributions.

EB-TC $_{\varepsilon}$ has also guarantees for **any confidence level**.

Anytime guarantees

Probability of *c***-error** and **expected simple regret**.

Theorem

Let $\varepsilon_0 > 0$. EB-TC_{ε_0} with fixed $\beta = 1/2$ satisfies that, for all $n > 5K^2/2$,

$$\forall \varepsilon \ge 0, \quad \mathbb{P}_{\nu} \left(\hat{i}_n \notin \mathcal{I}_{\varepsilon}(\mu) \right) \le \exp \left(-\Theta \left(\frac{n}{H_{i_{\mu}(\varepsilon)}(\mu, \varepsilon_0)} \right) \right) , \\ \mathbb{E}_{\nu} \left[\mu_{\star} - \mu_{\hat{i}_n} \right] \le \sum_{i \in [C_{\mu} - 1]} (\Delta_{i+1} - \Delta_i) \exp \left(-\Theta \left(\frac{n}{H_i(\mu, \varepsilon_0)} \right) \right) ,$$

where $H_1(\mu, \varepsilon_0) = K(2\Delta_{\min}^{-1} + 3\varepsilon_0^{-1})^2$ and $H_i(\mu, \varepsilon_0) = \Theta(K/\Delta_{i+1}^{-2})$.

Ordered distinct gaps $(\Delta_i)_{i \in [C_{\mu}]}$ and $i_{\mu}(\varepsilon) = i$ if $\varepsilon \in [\Delta_i, \Delta_{i+1})$.

6/8

Empirical results

Figure: (a) Stopping time on instances $\mu_i = 1 - ((i-1)/(K-1))^{0.3}$ for varying K. (b) Simple regret on instance $\mu = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2)$ fors EB-TC₅₀ with slack $\varepsilon_0 = 0.1$ and fixed $\beta = 1/2$.

GLR_{ε} stopping (1) with (ε , δ) = (10⁻¹, 10⁻²). T3C, EB-TCI, TTUCB, TaS, FWS, DKM are modified for ε -BAI. Marc Jourdan EB-TC = for Fixed-Confidence and Bevond November 3, 2023

Conclusion

Benefits of EB-TC $_{\varepsilon}$:

- Easy to implement, computationally inexpensive and versatile algorithm.
- Good empirical performance for the sample complexity and simple regret.
- Asymptotic and finite confidence upper bound on the expected sample complexity.
- Anytime upper bounds on the uniform
 ε-error and the expected simple regret.

Paper & Poster

