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Motivation

Goal: Identify one item that has a good enough average return.

Two main approaches:

• fixed-confidence, control the error and minimize the sampling
budget or

• fixed-budget, control the sampling budget and minimize the
error.

△! Too restrictive for many applications !

☞ This paper: guarantees at any time on the candidate answer !
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ε-Best-arm identification (ε-BAI)
K arms: arm i ∈ [K] with νi is a 1-sub-Gaussian with mean µi.

Goal: identify one ε-good arm Iε(µ) = {i | µi ≥ maxj µj − ε}.

Algorithm: at time n,
• Recommendation rule: recommend the candidate answer ı̂n
• Sampling rule: pull arm In and observe Xn ∼ νIn.

Fixed-confidence: given an error/confidence pair (ε, δ), define an
(ε, δ)-PAC stopping time τε,δ, i.e. Pν(τε,δ < +∞, ı̂τε,δ /∈ Iε(µ)) ≤ δ,
☞ Minimize the expected sample complexity Eν [τε,δ].

Fixed-budget: given an error/budget pair (ε, T ),
☞ Minimize the probablity of ε-error Pν (̂ıT /∈ Iε(µ)) at time T .

Anytime: Control the simple regret Eν [maxj µj−µı̂n ] at any time n.
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Top Two sampling rule: EB-TCε0, fixed β or IDS
Input: slack ε0 > 0, proportion β ∈ (0, 1) (only for fixed).

Set ı̂n ∈ argmaxi∈[K] µn,i;
Set Bn = ı̂n and Cn ∈ argmini ̸=Bn

µn,Bn−µn,i+ε0√
1/Nn,Bn+1/Nn,i

;

Update β̄n+1(Bn, Cn) where βn(i, j) =

{
β [fixed]

Nn,j

Nn,i+Nn,j
[IDS]

;

Tracking: In =

{
Cn if NBn

n,Cn
≤ (1− β̄n+1(Bn, Cn))Tn+1(Bn, Cn)

Bn otherwise
;

Output: next arm to sample In and next recommendation ı̂n.

(Nn,i, µn,i): pulling count and empirical mean of arm i before time n.
Tn(i, j): selection count of the leader/challenger pair (i, j) before time n.
β̄n(i, j): average proportion when selecting (i, j) before time n.
N i

n,j : pulling count of arm j when selecting pair (i, j) before time n.
Marc Jourdan EB-TCε for Fixed-Confidence and Beyond November 3, 2023 4 / 8



Fixed-confidence guarantees
(Degenne and Koolen, 2019) For all (ε, δ)-PAC algorithms,

lim inf
δ→0

Eν [τε,δ]/ log(1/δ) ≥ Tε(µ) .

GLRε stopping rule: recommend ı̂n ∈ argmaxi∈[K] µn,i and

τε,δ = inf{n > K | min
i ̸=ı̂n

µn,̂ın − µn,i + ε√
1/Nn,̂ın + 1/Nn,i

≥
√

2c(n− 1, δ)} . (1)

Theorem
Let ε > 0. Combined with GLRε stopping (1), EB-TCε with IDS (resp.
fixed β) proportions is asymptotically (resp. β-)optimal in
fixed-confidence ε-BAI for Gaussian distributions.

☞ EB-TCε has also guarantees for any confidence level.
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Anytime guarantees

Probability of ε-error and expected simple regret.

Theorem

Let ε0 > 0. EB-TCε0 with fixed β = 1/2 satisfies that, for all n > 5K2/2,

∀ε ≥ 0, Pν (̂ın /∈ Iε(µ)) ≤ exp

(
−Θ

(
n

Hiµ(ε)(µ, ε0)

))
,

Eν [µ⋆ − µı̂n ] ≤
∑

i∈[Cµ−1]

(∆i+1 −∆i) exp

(
−Θ

(
n

Hi(µ, ε0)

))
,

where H1(µ, ε0) = K(2∆−1
min + 3ε−1

0 )2 and Hi(µ, ε0) = Θ(K/∆−2
i+1).

Ordered distinct gaps (∆i)i∈[Cµ] and iµ(ε) = i if ε ∈ [∆i,∆i+1).
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Empirical results

Figure: (a) Stopping time on instances µi = 1− ((i− 1)/(K − 1))0.3 for varying
K. (b) Simple regret on instance µ = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2) fors EB-TCε0

with slack ε0 = 0.1 and fixed β = 1/2.

GLRε stopping (1) with (ε, δ) = (10−1, 10−2). T3C, EB-TCI, TTUCB, TaS, FWS,
DKM are modified for ε-BAI.
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Conclusion

Benefits of EB-TCε:

1 Easy to implement, computationally
inexpensive and versatile algorithm.

2 Good empirical performance for the
sample complexity and simple regret.

3 Asymptotic and finite confidence upper
bound on the expected sample complexity.

4 Anytime upper bounds on the uniform
ε-error and the expected simple regret.
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