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Motivation
Goal: Identify one item that has a good enough average return.

Two main approaches:
• control the error and minimize the sampling budget (fixed-confidence) or
• control the sampling budget and minimize the error (fixed-budget).

△! Too restrictive for many applications !

☞ This paper: guarantees at any time on the candidate answer !

ε-Best-arm identification (ε-BAI)

K arms: νi ∈ D is the 1-sub-Gaussian distribution of arm i ∈ [K] with mean µi.

Goal: identify one of the ε-good arms Iε(µ) = {i | µi ≥ µ⋆−ε} with µ⋆ = maxi µi.

Algorithm: at time n,
• Recommendation rule: recommend the candidate answer ı̂n
• Sampling rule: pull arm In and observe Xn ∼ νIn .

Fixed-confidence: given an error/confidence pair (ε, δ) ∈ R+ × (0, 1), define a
stopping time τε,δ which is (ε, δ)-PAC, i.e. Pν(τε,δ < +∞, ı̂τε,δ /∈ Iε(µ)) ≤ δ, and
☞ Minimize the expected sample complexity Eν [τε,δ].

Fixed-budget: given an error/budget pair (ε, T ) ∈ R+ × N,
☞ Minimize the probablity of ε-error Pν (̂ıT /∈ Iε(µ)) at time T .

Anytime: Minimize the expected simple regret Eν [µ
⋆ − µı̂n ] at any time n.

Lower bound on the expected sample complexity

? What is the best one could achieve ?

☞ Degenne and Koolen (2019): For all (ε, δ)-PAC algorithms and all Gaussian
instances with µ ∈ RK , lim infδ→0 Eν [τε,δ]/ log(1/δ) ≥ Tε(µ) where

Tε(µ) = min
i∈Iε(µ)

min
β∈(0,1)

Tε,β(µ, i) , Tε,β(µ, i)
−1 = max

w∈△K ,wi=β
min
j ̸=i

1

2

(µi − µj + ε)2

1/β + 1/wj
.

Top Two sampling rule: EB-TCε0 with fixed β or IDS proportions

Input: slack ε0 > 0, proportion β ∈ (0, 1) (only for fixed proportions).

Set ı̂n ∈ argmaxi∈[K] µn,i, Bn = ı̂n and Cn ∈ argmini̸=Bn

µn,Bn−µn,i+ε0√
1/Nn,Bn+1/Nn,i

;

Update β̄n+1(Bn, Cn) where [fixed] βn(i, j) = β or [IDS] βn(i, j) =
Nn,j

Nn,i+Nn,j
;

Set In = Cn if NBn

n,Cn
≤ (1− β̄n+1(Bn, Cn))Tn+1(Bn, Cn), otherwise set In = Bn;

Output: next arm to sample In and next recommendation ı̂n.

(Nn,i, µn,i): number of pulls and empirical mean of arm i before time n.
Tn(i, j): number of selection of the leader/challenger pair (i, j) before time n.
N i

n,j : number of pulls of arm j when selecting pair (i, j) before time n.

(ε, δ)-PAC sequential test

? How to obtain a (ε, δ)-PAC sequential test for 1-sub-Gaussian distributions ?

☞ GLRε stopping rule: recommend ı̂n ∈ argmaxi∈[K] µn,i and stop at time

τε,δ = inf

{
n > K | min

i ̸=ı̂n

µn,̂ın − µn,i + ε√
1/Nn,̂ın + 1/Nn,i

≥
√

2c(n− 1, δ)

}
, (1)

with c(n, δ) ≃ log(1/δ) + 2 log log(1/δ) + 4 log(4 + log(n/2)).

Asymptotic confidence guarantees

Theorem 1. Let ε ≥ 0 and ε0 > 0. Combined with GLRε stopping (1), the EB-
TCε0 algorithm satisfies that, for all ν ∈ DK with mean µ such that |i⋆(µ)| = 1,

• IDS: lim supδ→0 Eν [τε,δ]/ log(1/δ) ≤ Tε0(µ)Dε,ε0(µ),

• fixed β ∈ (0, 1): lim supδ→0 Eν [τε,δ]/ log(1/δ) ≤ Tε0,β(µ)Dε,ε0(µ),
where Dε,ε0(µ) = (1 + maxi ̸=i⋆(ε0 − ε)/(µ⋆ − µi + ε))2.

Corollary 1. Let ε > 0. Combined with GLRε stopping (1), the EB-TCε algorithm
with IDS (resp. fixed β) proportions is asymptotically (resp. β-)optimal in fixed-
confidence ε-BAI for Gaussian distributions.

Finite confidence guarantees

Theorem 2. Let δ ∈ (0, 1) and ε0 > 0. Combined with GLRε0 stopping (1), the
EB-TCε0 algorithm with fixed β = 1/2 satisfies that, for all ν ∈ DK with mean µ,

Eν [τε0,δ] ≤ inf
ε∈[0,ε0]

max {Tµ,ε0(δ, ε) + 1, Sµ,ε0(ε)}+ 2K2 , where

lim supδ→0
Tµ,ε0

(δ,0)

log(1/δ) ≤ 2|i⋆(µ)|Tε0,1/2(µ), Sµ,ε0(
ε0
2 ) = O(K2|Iε0/2(µ)|ε

−2
0 log ε−1

0 ).

Key result: Let δ ∈ (0, 1), n > K. Let En,δ be a concentration event with
Pν(E∁

n,δ) ≤ K2δ. Under the event En,δ, for all ε ≥ 0, we have∑
i∈Iε(µ)

∑
j

Tn(i, j) ≥ n− 8Hµ,ε0(ε) log(n
2/δ)− 3K2 − 1 ,

where Hµ,ε0(0) = O(Kmin{∆min, ε0}−2) and Hµ,ε0(ε0/2) = O(K/ε20).

Empirical stopping time

Figure 1: Stopping time on (a) instances µi = 1− ((i− 1)/(K − 1))0.3 for varying K and (b) random
instances (K = 20) with µ1 = 1, µi ∼ U([0, 0.9) for all i ≥ 6, otherwise µi ∼ U([0.9, 1]).

Beyond fixed-confidence guarantees

Anytime guarantees on
• the probability of ε-error and
• the expected simple regret.

Theorem 3. Let ε0 > 0. The EB-TCε0 algorithm with fixed proportions β = 1/2
satisfies that, for all ν ∈ DK with mean µ, for all n > 5K2/2,

∀ε ≥ 0, Pν (̂ın /∈ Iε(µ)) ≤ exp

(
−Θ

(
n

Hiµ(ε)(µ, ε0)

))
,

Eν [µ⋆ − µı̂n ] ≤
∑

i∈[Cµ−1]

(∆i+1 −∆i) exp

(
−Θ

(
n

Hi(µ, ε0)

))
,

where H1(µ, ε0) = K(2∆−1
min + 3ε−1

0 )2 and Hi(µ, ε0) = Θ(K/∆−2
i+1) for all i > 1.

Notation: distinct mean gaps 0 = ∆1 < ∆2 < · · · < ∆Cµ
< ∆Cµ+1 = +∞ where

Cµ = |{µi | i ∈ [K]}|. For all ε ≥ 0, let iµ(ε) = i if ε ∈ [∆i,∆i+1).
Other guarantees: unverifiable sample complexity and cumulative regret.

Empirical simple regret

Figure 2: Simple regret on instance µ = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2) for EB-TCε0 with (ε0, β) =
(0.1, 1/2).

Implementation details: GLRε stopping (1) with (ε, δ) = (10−1, 10−2). T3C, EB-
TCI, TTUCB, TaS, FWS, DKM are modified for ε-BAI.

Conclusion
1. Easy to implement, computationally inexpensive and versatile algorithm.

2. Good empirical performance for the sample complexity and simple regret.

3. Asymptotic and finite confidence upper bound on the expected sample com-
plexity. Asymptotic (β-)optimality in ε-BAI for Gaussian distributions.

4. Anytime upper bounds on the uniform ε-error and the simple regret.


