

Motivation

Goal: Identify one item that has a good enough average return.

Two main approaches:

- control the error and minimize the sampling budget (fixed-conf
- control the sampling budget and minimize the error (fixed-budget)

 \triangle Too restrictive for many applications !

This paper: guarantees at any time on the candidate answer

ε -Best-arm identification (ε -BAI)

K arms: $\nu_i \in \mathcal{D}$ is the 1-sub-Gaussian distribution of arm $i \in [K]$ wi

Goal: identify one of the ε -good arms $\mathcal{I}_{\varepsilon}(\mu) = \{i \mid \mu_i \geq \mu_{\star} - \varepsilon\}$ with

Algorithm: at time n,

- Recommendation rule: recommend the candidate answer \hat{i}_n
- Sampling rule: pull arm I_n and observe $X_n \sim \nu_{I_n}$.

Fixed-confidence: given an error/confidence pair $(\varepsilon, \delta) \in \mathbb{R}_+ \times$ stopping time $\tau_{\varepsilon,\delta}$ which is (ε,δ) -PAC, i.e. $\mathbb{P}_{\nu}(\tau_{\varepsilon,\delta} < +\infty, \hat{\imath}_{\tau_{\varepsilon,\delta}} \notin \mathcal{I}_{\varepsilon})$ Minimize the expected sample complexity $\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]$.

Fixed-budget: given an error/budget pair $(\varepsilon, T) \in \mathbb{R}_+ \times \mathbb{N}$, Minimize the probablity of ε -error $\mathbb{P}_{\nu}(\hat{\imath}_T \notin \mathcal{I}_{\varepsilon}(\mu))$ at time T.

Anytime: Minimize the expected simple regret $\mathbb{E}_{\nu}[\mu^{\star} - \mu_{\hat{i}_n}]$ at any

Lower bound on the expected sample complexity

? What is the best one could achieve ?

 \bowtie Degenne and Koolen (2019): For all (ε, δ) -PAC algorithms and instances with $\mu \in \mathbb{R}^{K}$, $\liminf_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}] / \log(1/\delta) \geq T_{\varepsilon}(\mu)$ where

 $T_{\varepsilon}(\mu) = \min_{i \in \mathcal{I}_{\varepsilon}(\mu)} \min_{\beta \in (0,1)} T_{\varepsilon,\beta}(\mu,i), \quad T_{\varepsilon,\beta}(\mu,i)^{-1} = \max_{w \in \Delta_{K}, w_{i} = \beta} \min_{j \neq i} \frac{1}{2}$

Top Two sampling rule: EB-TC_{ε_0} with fixed β or IDS

Input: slack $\varepsilon_0 > 0$, proportion $\beta \in (0, 1)$ (only for fixed proportions

Set $\hat{i}_n \in \arg\max_{i \in [K]} \mu_{n,i}$, $B_n = \hat{i}_n$ and $C_n \in \arg\min_{i \neq B_n} \frac{\mu_{n,B_n}}{\sqrt{1/N_{n,E_n}}}$

Update $\bar{\beta}_{n+1}(B_n, C_n)$ where [fixed] $\beta_n(i, j) = \beta$ or [IDS] $\beta_n(i, j)$

Set $I_n = C_n$ if $N_{n,C_n}^{B_n} \leq (1 - \overline{\beta}_{n+1}(B_n, C_n))T_{n+1}(B_n, C_n)$, otherwise set $I_n = B_n$; **Output**: next arm to sample I_n and next recommendation \hat{i}_n .

 $(N_{n,i}, \mu_{n,i})$: number of pulls and empirical mean of arm i before time n. $T_n(i, j)$: number of selection of the leader/challenger pair (i, j) before time n. $N_{n,j}^i$: number of pulls of arm j when selecting pair (i,j) before time n.

for	Best-Arm Identificati Fixed-Confidence and Marc Jourdan, Rémy Degenne and Er Iniv. Lille, CNRS, Inria, Centrale Lille, UMR 9189-CRIStAL
	(ε, δ) -PAC sequential test
	? How to obtain a (ε, δ) -PAC sequential test for 1-
nfidence) or dget).	\square GLR _{ε} stopping rule: recommend $\hat{i}_n \in \arg \max$
	$\tau_{\varepsilon,\delta} = \inf \left\{ n > K \mid \min_{i \neq \hat{\imath}_n} \frac{\mu_{n,\hat{\imath}_n} - \mu_{n,i} + \varepsilon}{\sqrt{1/N_{n,\hat{\imath}_n} + 1/N_n}} \right\}$
	with $c(n, \delta) \simeq \log(1/\delta) + 2\log\log(1/\delta) + 4\log(4 + \log(1/\delta))$
!	Asymptotic confidence guarantees
	Theorem 1. Let $\varepsilon \geq 0$ and $\varepsilon_0 > 0$. Combined with
with mean μ_i .	TC_{ε_0} algorithm satisfies that, for all $\nu \in \mathcal{D}^K$ with me
h $\mu^{\star} = \max_i \mu_i$.	• IDS : $\limsup_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}] / \log(1/\delta) \le T_{\varepsilon_0}(\mu) D_{\varepsilon,\varepsilon_0}$
(0,1), define a $(\mu)) \leq \delta$, and	• fixed $\beta \in (0,1)$: $\limsup_{\delta \to 0} \mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]/\log(1/\delta) \le$ where $D_{\varepsilon,\varepsilon_0}(\mu) = (1 + \max_{i \neq i^{\star}}(\varepsilon_0 - \varepsilon)/(\mu_{\star} - \mu_i + \varepsilon_0))$
	Corollary 1. Let $\varepsilon > 0$. Combined with GLR _{ε} stopp with IDS (resp. fixed β) proportions is asymptotic confidence ε -BAI for Gaussian distributions.
	Finite confidence guarantees
	Theorem 2. Let $\delta \in (0,1)$ and $\varepsilon_0 > 0$. Combined <i>EB-TC</i> $_{\varepsilon_0}$ algorithm with fixed $\beta = 1/2$ satisfies that,
	$\mathbb{E}_{\nu}[\tau_{\varepsilon_0,\delta}] \leq \inf_{\varepsilon \in [0,\varepsilon_0]} \max\left\{T_{\mu,\varepsilon_0}(\delta,\varepsilon) + 1, S_{\mu,\varepsilon}\right\}$
	$\limsup_{\delta \to 0} \frac{T_{\mu,\varepsilon_0}(\delta,0)}{\log(1/\delta)} \le 2 i^{\star}(\mu) T_{\varepsilon_0,1/2}(\mu), S_{\mu,\varepsilon_0}(\frac{\varepsilon_0}{2}) =$
	Key result: Let $\delta \in (0,1)$, $n > K$. Let $\mathcal{E}_{n,\delta}$ b $\mathbb{P}_{\nu}(\mathcal{E}_{n,\delta}^{\complement}) \leq K^2 \delta$. Under the event $\mathcal{E}_{n,\delta}$, for all $\varepsilon \geq 0$,
nd all Gaussian	$\sum_{i \in \mathcal{I}_{\varepsilon}(\mu)} \sum_{j} T_{n}(i,j) \ge n - 8H_{\mu,\varepsilon_{0}}(\varepsilon) \log(\varepsilon)$
$\frac{(\mu_i - \mu_j + \varepsilon)^2}{1/\beta + 1/w_j} .$	where $H_{\mu,\varepsilon_0}(0) = \mathcal{O}(K\min\{\Delta_{\min},\varepsilon_0\}^{-2})$ and $H_{\mu,\varepsilon_0}(0)$
proportions	Empirical stopping time
ns).	10^6 EB-TC _{ε} 5.0×10 ⁴
$\frac{1}{2} - \mu_{n,i} + \varepsilon_0}{\mu_{n,B_n} + 1/N_{n,i}}$;	$10^{5} = \varepsilon - T3C$ $- \varepsilon - EB - TCI$ $- \varepsilon - \varepsilon - TTUCB$
$= \frac{N_{n,j}}{N_{n,i}+N_{n,j}};$	$\begin{bmatrix} \sqrt{2} & 10^{4} \\ -\sqrt{2} & 10^{4} \\ -\sqrt{2} & 10^{4} \\ -\sqrt{2} & \sqrt{2} & 2$
${N}_{n,i}\!+\!N_{n,j}$ '	
se set $I_n = B_n$;	2.0×10 ⁴

Figure 1: Stopping time on (a) instances $\mu_i = 1 - ((i-1)/(K-1))^{0.3}$ for varying K and (b) random instances (K = 20) with $\mu_1 = 1$, $\mu_i \sim \mathcal{U}([0, 0.9)$ for all $i \geq 6$, otherwise $\mu_i \sim \mathcal{U}([0.9, 1])$.

 10^2

 1.0×10^{4}

 10^{3}

 10^{3}

ion Algorithm nd Beyond

milie Kaufmann AL, F-59000 Lille, France

Université de Lille

-sub-Gaussian distributions ? $\mathbf{x}_{i \in [K]} \mu_{n,i}$ and stop at time

$$\frac{\varepsilon}{n,i} \ge \sqrt{2c(n-1,\delta)} \bigg\} , \qquad (1)$$

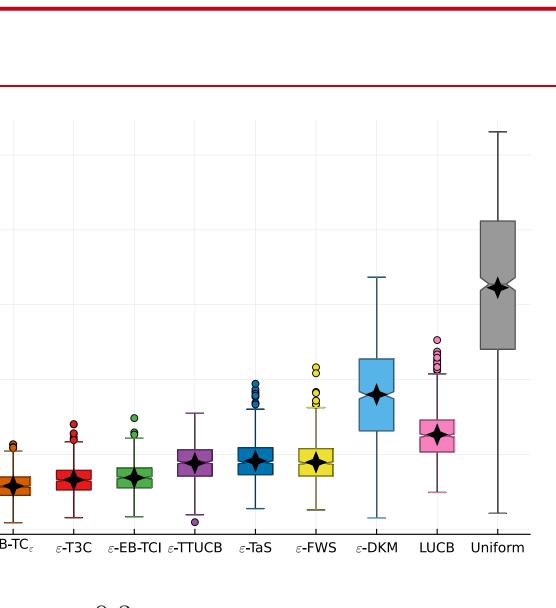
 $\log(n/2)$).

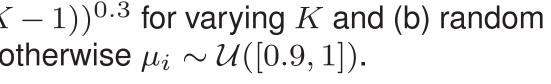
ith GLR_{ε} *stopping* (1), *the* EBnean μ such that $|i^{\star}(\mu)| = 1$,

 $,arepsilon_{0}(\mu)$, $\leq T_{\varepsilon_0,\beta}(\mu) D_{\varepsilon,\varepsilon_0}(\mu)$, - $arepsilon))^2$.

oping (1), the EB-TC_{ε} algorithm cally (resp. β -)optimal in fixed-

ed with GLR_{ε_0} stopping (1), the It, for all $\nu \in \mathcal{D}^K$ with mean μ ,


 $_{\varepsilon_0}(\varepsilon)\} + 2K^2$, where

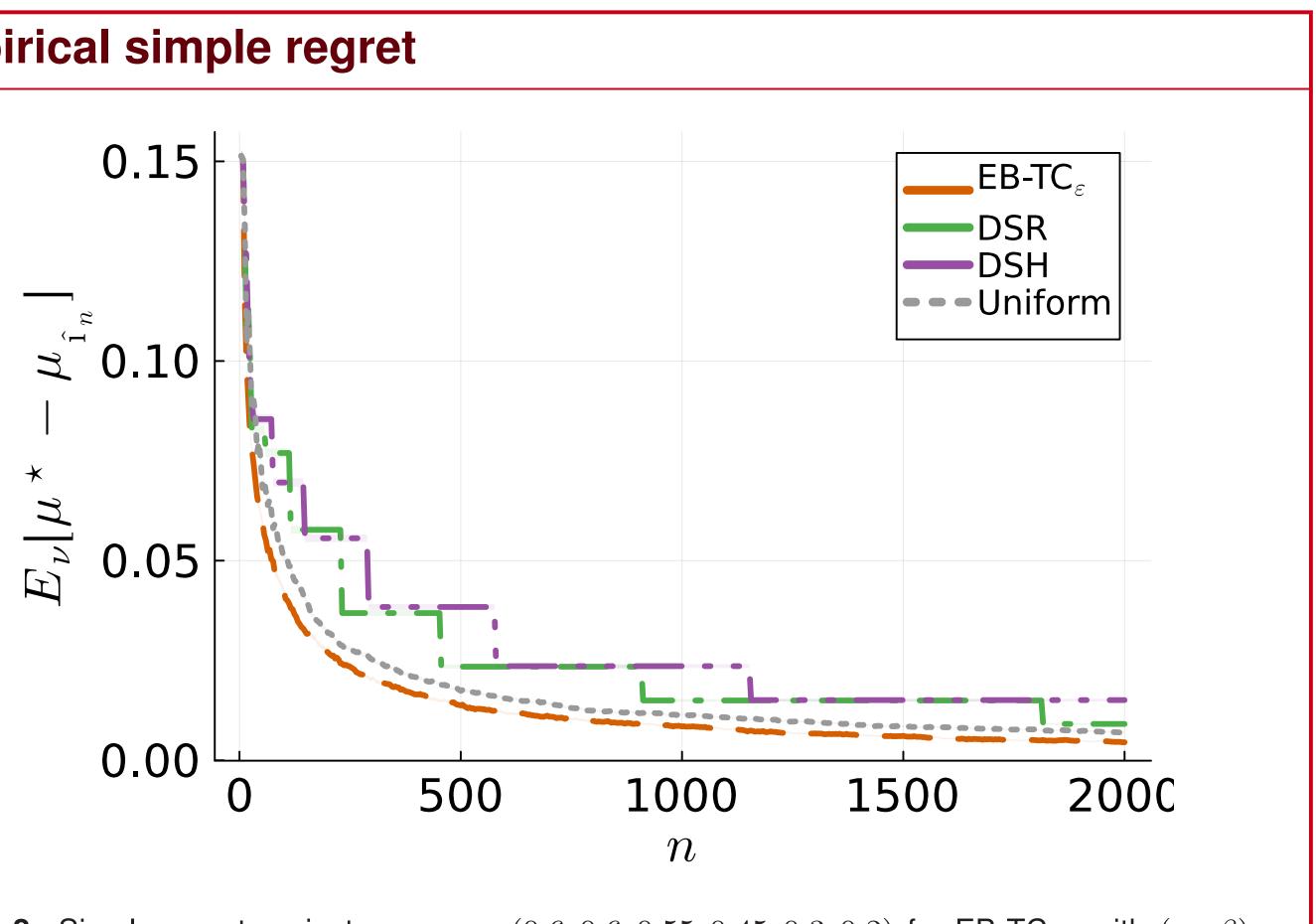

 $= \mathcal{O}(K^2 | \mathcal{I}_{\varepsilon_0/2}(\mu) | \varepsilon_0^{-2} \log \varepsilon_0^{-1}).$

be a concentration event with , we have

 $g(n^2/\delta) - 3K^2 - 1$,

 $\varepsilon_0(\varepsilon_0/2) = \mathcal{O}(K/\varepsilon_0^2).$

Beyond fixed-confidence guarantees


- Anytime guarantees on
- the **probability of** ε -error and
- the expected simple regret.

satisfies that, for all $\nu \in \mathcal{D}^K$ with mean μ , for all $n > 5K^2/2$,

$$\mathbb{E}_{\nu}[\mu_{\star} - \mu_{\hat{\imath}_n}] \le \sum_{i \in [C_{\mu} - 1]}$$

 $C_{\mu} = |\{\mu_i \mid i \in [K]\}|$. For all $\varepsilon \geq 0$, let $i_{\mu}(\varepsilon) = i$ if $\varepsilon \in [\Delta_i, \Delta_{i+1})$.

Empirical simple regret

(0.1, 1/2).

TCI, TTUCB, TaS, FWS, DKM are modified for ε -BAI.

Conclusion

- Easy to implement, computationally inexpensive and versatile algorithm.
- 2. Good empirical performance for the sample complexity and simple regret.
- 3. Asymptotic and finite confidence upper bound on the expected sample complexity. Asymptotic (β -)optimality in ε -BAI for Gaussian distributions.
- 4. Anytime upper bounds on the uniform ε -error and the simple regret.

- **Theorem 3.** Let $\varepsilon_0 > 0$. The EB-TC $_{\varepsilon_0}$ algorithm with fixed proportions $\beta = 1/2$
 - $\forall \varepsilon \ge 0, \quad \mathbb{P}_{\nu} \left(\hat{\imath}_n \notin \mathcal{I}_{\varepsilon}(\mu) \right) \le \exp\left(-\Theta\left(\frac{n}{H_{i_{\mu}(\varepsilon)}(\mu, \varepsilon_0)} \right) \right) \,,$ $\left(\Delta_{i+1} - \Delta_i\right) \exp\left(-\Theta\left(\frac{n}{H_i(\mu,\varepsilon_0)}\right)\right) ,$
- where $H_1(\mu, \varepsilon_0) = K(2\Delta_{\min}^{-1} + 3\varepsilon_0^{-1})^2$ and $H_i(\mu, \varepsilon_0) = \Theta(K/\Delta_{i+1}^{-2})$ for all i > 1. *Notation:* distinct mean gaps $0 = \Delta_1 < \Delta_2 < \cdots < \Delta_{C_n} < \Delta_{C_n+1} = +\infty$ where
- Other guarantees: unverifiable sample complexity and cumulative regret.

Figure 2: Simple regret on instance $\mu = (0.6, 0.6, 0.55, 0.45, 0.3, 0.2)$ for EB-TC_{ε_0} with $(\varepsilon_0, \beta) =$

Implementation details: GLR_{ε} stopping (1) with (ε, δ) = (10⁻¹, 10⁻²). T3C, EB-