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MOTIVATION
Imagine you’re testing some vaccines. Some are highly effective. Others are safer.
Some are cheap to produce.

⇒Which ones offer the best trade-off?

• Traditional single-metric approaches fail when trade-offs are unclear
• Pareto Set: all solutions that are not worse in all objectives compared to another
• Objectives are often correlated

PARETO SET IDENTIFICATION

Setting
• Each arm i ∈ {1, . . . , K} is associated with a distribution νi = N(µi,Σ), where
µi ∈ Rd and Σ ∈ Rd×d is a shared covariance matrix (possibly correlated)

• The agent interacts with the arms in a sequential manner, selecting one arm At

at each time step and observing a sample Xt ∼ νAt

Our goal: Identify the Pareto-optimal set of arms:

S⋆(µ) := {i ∈ [K] : ∄j ̸= i such that µj ≻ µi}

where µj ≻ µi means µj dominates µi in all objectives.

With δ-PAC guarantees: Return S⋆ with probability at least 1− δ, using as few
samples as possible.

Applications: clinical trials, large-scale recommender systems, software and hard-
ware design, hyper-parameter optimization etc.

Contributions :

1. Efficient and asymptotically optimal policy for PSI with correlations

2. Supports structured, correlated, transductive bandit settings

3. Opens path for generalizing posterior-sampling-based pure exploration.

STATISTICAL COMPLEXITY

Sample complexity lower bound: for any δ-PAC policy for PSI, Eν[τ ] ⩾

(Γ⋆
ν)
−1 log(1/(2.4δ)) , where

Γ⋆
ν := sup

w∈△
inf

λ∈Alt(S⋆(µ))

K∑
k=1

wk

2
∥µk − λk∥2Σ−1

•△ is the probability simplex
•Alt(S⋆(µ)) := {λ ∈ RK×d | S⋆(λ) ̸= S⋆(µ)} is the set of alternative (incorrect)

answers
•w⋆(µ): set maximizers of Γ⋆

ν are optimal pulls allocations

⇒ an algorithm is asymptotically optimal if its sample complexity matches that lower
bound, namely if lim sup

δ→0
Eν[τ ]/ log(1/δ) ⩽ Γ⋆(θ)−1

Computational challenge

• Finding w⋆(µ) requires oracle Oµ : w ∈ △ 7→ argmin
λ∈Alt(S⋆(µ))

K∑
k=1

wk

2
∥µk − λk∥2Σ−1

•Alt(S⋆(θ)) is not convex but only countably convex
• For Σ = σ2Id, Oµ can be computed by solving O(K|S⋆(µ)|d) separably convex

problems (cf Crepon et al [2024])

. No efficient oracle when Σ is non-diagonal

OUR ALGORITHM

Main Idea: Interpret the lower bound as the saddle-point of a two-player game

Γ⋆
ν = supw∈△infλ∈Alt(S⋆(µ))

∑
k

wk

2
∥µk − λk∥2Σ−1

• Use no-regret learners for both players:

–A△ for the sup player use e.g., AdaHedge
–AAlt for the inf use Continuous Exponential Weights (CEW) on the Alt

� CEW with squared loss ≈ Gaussian Posterior Sampling

•α-inflated Gaussian posterior distribution :

Πα
t = ⊗k=K

k=1 N(µ̂t,k, αΣ/Nt,k) and St = S⋆(µ̂t)

Algorithm 1: PSI-PS Sampling Rule

Initialize: pull each arm once, let wexp = 1/K, α ∈ (0, 1/2)
Input: learner A△ and stopping rule PS Stopping
Set t← K + 1
while not PS Stopping(t− 1) do

Sample λη
t ∼ Trunc(Π(1/ηt)

t , Alt(St))
Get wt from A△(Ht−1)
Pull At ∼ (1− γt)wt + γtwexp, γt = t−α

Update A△ with bonuses Ut : k 7→
∥∥∥µ̂t,k − λη

t,k

∥∥∥2
Σ−1

Increment t
return St

• When to stop collecting new samples?

Key idea : Stop when the posterior concentrates

Algorithm 2: PS Stopping(t)

Input: Ht−1, risk δ ∈ (0, 1) budget and inflation M(t, δ) and c(t, δ)
for m = 1 to M(t, δ) do

Sample λm
t ∼ Π

c(t,δ)
t

if S⋆(λm
t ) ̸= S⋆(µ̂t) then

break and return false
return true

• Stopping time : τPS := inf {t ⩾ K : PS Stopping(t) is true}

Lemma

For c(t, δ) ≈ 1 +
dK log log(t)

log(1/δ)
and M(t, δ) ≈ rΣ,δ(|St|)

log(t/δ)

δ
with rΣ,δ(n) =

O(polyn(
√

(log(1/δ)), ∥|Σ−1∥|)) the PS stopping is δ-PAC for any δ ∈ (0, 1)

Theorem : PS-PSI Optimality

• Sample complexity:

lim
δ→0

Eν[τPS]

log(1/δ)
= 1/Γ⋆

ν

• Posterior contraction : with probability 1

lim
t→+∞

−t−1 logΠt(Alt(S
⋆(µ))) = Γ⋆

ν

Key advantages :
• Asymptotically optimal algorithm for PSI w/o correlation

• Exploration and sampling relies on posterior sampling and online learning

• Sample efficient and computationally efficient

EXPERIMENTAL RESULTS
Impact of correlation Sample complexity Runtime
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