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Main Idea: Interpret the lower bound as the saddle-point of a two-player game
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MOTIVATION

Imagine you're testing some vaccines. Some are highly effective. Others are safer.
Some are cheap to produce.

OUR ALGORITHM
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e Use no-regret learners for both players:

—2A A for the sup player use e.g., AdaHedge
— 2 4;; for the inf use Continuous Exponential Weights (CEW) on the Alt

Q

CEW with squared loss ~ Gaussian Posterior Sampling

 a-inflated Gaussian posterior distribution :

¢ = @1 Nljug, aX/N,y) and Sy = S*(fu)

Algorithm 1: PSI-PS Sampling Rule
Initialize: pull each arm once, let w,,, = 1/K, o € (0,1/2)
Input: learner A and stopping rule PS_Stopping

Sett + K +1

while not PS Stopping(t—1) do

Sample \/ ~ Trunc(Hgl/ ), Alt(S}))

Get w; from A (H; 1)

) Pull At ~ (1 — %)wt + YVt Wexp,

e Traditional single-metric approaches fail when trade-offs are unclear

e Pareto Set: all solutions that are not worse in all objectives compared to another

e Objectives are often correlated

PARETO SET IDENTIFICATION

Ve =1t""
Update 2 o with bonuses U; : k —

_ Increment ¢
return S;

! Setting

eEacharm¢ € {1,..., K} is associated with a distribution v; = N (u;, 23), where P — Al

1; € RYand 3 € R% is a shared covariance matrix (possibly correlated)

‘ 2

2—1

* The agent interacts with the arms in a sequential manner, selecting one arm A;
at each time step and observing a sample X; ~ v 4,

\_ J

* When to stop collecting new samples?

 Our goal: Identify the Pareto-optimal set of arms:

S*(w) = {i € [K] : Bj # i such that p; = p1;}

where (1; > p; means p; dominates p; 1n all objectives.

Key idea : Stop when the posterior concentrates

Algorithm 2: PS_Stopping(t)
Input: H; 1, risk 6 € (0, 1) budget and inflation M (¢, ) and c(t, 9)
for m =1to M(t,0) do
Sample X/’ ~ IT"
if S*(\)") # S™(j1;) then

_ break and return false
return true

With )-PAC guarantees: Return S* with probability at least 1 — 0, using as few
samples as possible.

J

Applications: clinical trials, large-scale recommender systems, software and hard-
ware design, hyper-parameter optimization etc.

B e — | e Stopping time : 7ps ;= inf {f > K : PS_Stopping(t) is true}
1. Efficient and asymptotically optimal policy for PSI with correlations " Lemma )
2. Supports structured, correlated, transductive bandit settings For c(t,9) ~ 1 + dll( 1o(g 1/05%(75) and M (t,0) =~ rx 5(‘St’)log(§/ 9) with 75 5(n) =
.. : : : og(1 | ’
: h { 1 - ling- 1 :
] 3. Opens path for generalizing posterior-sampling-based pure exploration ) O(poly \/ log(1/9)). | !2‘1H ) the PS stopping is 3-PAC for any 6 € (0, 1)
STATISTICAL COMPLEXITY
i Sample complexity lower bound: for any -PAC policy for PSI, E, 7| > \ TI;EOI’EIIII : PS—I;SI. Optimality
N e Sample complexity:
(T*) " log(1/(2.45)) , where = PRERY E,[7vs]
lim =1/T7
K 5—01og(1/6)
F’; = sSup inf Z bl H L — Ak”%}—l  Posterior contraction : with probability 1
weA AEAL(S(p) < 2
\ y lim —t 'log IL,(Alt(S*(n))) = I}

t——+00

/A 1s the probability simplex

e Alt(S* () == {X € RE*T | S*(X\) # S*(u)} is the set of alternative (incorrect)
answers

Key advantages :

. , . * Asymptotically optimal algorithm for PSI w/o correlation
o w”(p): set maximizers of 17, are optimal pulls allocations

e Exploration and sampling relies on posterior sampling and online learning

= an algorithm 1s asymptotically optimal if 1ts sample complexity matches that lower

bound, namely if limsup E,|[7]/log(1/4§) < F*(H)_l
0—0

e Sample efficient and computationally efficient

, EXPERIMENTAL RESULTS
Computational challenge
K Impact of correlation Sample complexity Runtime
. . . . w 100 A
* Finding w™ () requires oracle 9, : w € A — argmin Z — e — Aell5s " 35.000- * - e
)\EAlt(S*(;L)) L—1 2 24004 e e e e 30,000 - 80 - -
» Alt(57(0)) is not convex but only countably convex . e | 60- .

*For ¥ = 0°I;, O, can be computed by solving O(K|S*(u)|?) separably convex
problems (cf Crepon et al [2024])

No efficient oracle when . is non-diagonal
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