Solving pure exploration problems with the Top Two approach

Marc Jourdan

Supervised by Dr. **Émilie Kaufmann** and Dr. **Rémy Degenne**

June 14, 2024

Phase III clinical trials

Goal: Identify a treatment with a high efficiency.

Phase III clinical trials

Goal: Identify a treatment with a high efficiency.

Setting: Pure exploration for stochastic multi-armed bandits.

☞ Sequential hypothesis testing with adaptive data collection.

Sequential decision making under uncertainty

After treating $n - 1$ patients, the physician has **■** a quessed answer for a good treatment $\hat{i}_n \in [K]$.

As the n -th patient enters, the physician selects **■** a treatment $I_n \in [K]$ for administration.

Then, it observes a realization $X_n \sim \nu_L$ with $\nu_i = \mathcal{B}(\mu_i)$.

$$
(i_n)_{n>K}
$$
\n
$$
(I_n)_{n\geq 1}
$$
\n
$$
(K_n)_{n\geq 1}
$$
\n
$$
(K_n)
$$

Other applications

- crop management for agriculture,
- A/B testing for online marketing,
- hyperparameter optimization.

Key requirements of a good strategy

To be advocated by statisticians:

- \checkmark guarantees on the quality of the guessed answer,
- \checkmark low empirical error quickly.

Key requirements of a good strategy

- To be advocated by statisticians:
- ✓ guarantees on the quality of the guessed answer,
- \checkmark low empirical error quickly.

To be used by practitioners:

- \checkmark simple.
- \checkmark interpretable,
- $\sqrt{\,}$ generalizable,
- ✓ versatile.

Key requirements of a good strategy

- To be advocated by statisticians:
- ✓ guarantees on the quality of the guessed answer,
- \checkmark low empirical error quickly.

To be used by practitioners:

- \checkmark simple.
- \checkmark interpretable,
- $\sqrt{\,}$ generalizable,
- ✓ versatile.

The **Top Two approach** satisfies them all !

The Top Two approach

Set a **leader** answer $B_n \in [K]$;

Set a **challenger** answer $C_n \in [K] \setminus \{B_n\}$;

Set a **target** $\beta_n(B_n, C_n) \in [0, 1]$;

Return $I_n \in \{B_n, C_n\}$ using target $\beta_n(B_n, C_n)$.

Roadmap of this talk based on my PhD thesis

UL Univers
He de Litte

Contributions featured in this talk

- **MJ**, Rémy Degenne, Dorian Baudry, Rianne de Heide and Émilie Kaufmann. Top Two algorithms revisited. Advances in Neural Information Processing Systems, 2022.
- **E** MJ, Rémy Degenne and Émilie Kaufmann. Dealing with unknown variances in best-arm identification. Algorithmic Learning Theory, 2023.
- *M* MJ and Rémy Degenne. Non-asymptotic analysis of a UCB-based Top Two algorithm. Advances in Neural Information Processing Systems, 2023.

MJ. Rémv Degenne and Émilie Kaufmann. An ε-best-arm identification algorithm for fixed-confidence and beyond. Advances in Neural Information Processing Systems, 2023.

Other contributions during my PhD thesis

- **MJ** and Rémy Degenne. Choosing answers in ε-best-answer identification for linear bandits. International Conference on Machine Learning, 2022.
- **A** Achraf Azize, MJ, Aymen Al Marjani and Debabrota Basu. On the complexity of differentially private best-arm identification with fixed confidence. Advances in Neural Information Processing Systems, 2023.
- 3 **MJ** and Clémence Réda. An anytime algorithm for good arm identification.
- 3 Achraf Azize, **MJ**, Aymen Al Marjani and Debabrota Basu. Differentially private best-arm identification.

Stochastic multi-armed bandits

 K arms: arm $i\in[K]$ with $\nu_i\in\mathcal{D}$ having mean μ_i .

Class of distributions D:

- parametric, e.g. Bernoulli, Gaussian (known or unknown variance).
- non-parametric, e.g. bounded distributions in $[0, B]$. \bullet

Stochastic multi-armed bandits

- K arms: arm $i\in[K]$ with $\nu_i\in\mathcal{D}$ having mean μ_i .
- Class of distributions D:
	- parametric, e.g. Bernoulli, Gaussian (known or unknown variance).
	- non-parametric, e.g. bounded distributions in $[0, B]$.

Underlying structure:

$$
\bullet \text{ vanilla}, \mu = (\mu_i)_{i \in [K]} \in \mathbb{R}^K.
$$

linear, $\mu_i = \langle \theta, a_i \rangle$ where $\theta \in \mathbb{R}^d$ is unknown and $a_i \in \mathbb{R}^d$ is known.

Stochastic multi-armed bandits

- K arms: arm $i\in[K]$ with $\nu_i\in\mathcal{D}$ having mean μ_i .
- Class of distributions D:
	- parametric, e.g. Bernoulli, Gaussian (known or unknown variance).
	- non-parametric, e.g. bounded distributions in $[0, B]$.

Underlying structure:

$$
\bullet \text{ vanilla}, \mu = (\mu_i)_{i \in [K]} \in \mathbb{R}^K.
$$

linear, $\mu_i = \langle \theta, a_i \rangle$ where $\theta \in \mathbb{R}^d$ is unknown and $a_i \in \mathbb{R}^d$ is known.

Running example

Vanilla bandits for **Gaussian** with unit variance.

Goal: identify one arm in $\mathcal{I}_{\varepsilon}(\mu) = \{i \mid \mu_i \geq \max_i \mu_i - \varepsilon\}$ with $\varepsilon \geq 0$.

Algorithm: at time n ,

- *Recommendation rule*: recommend a candidate answer \hat{i}_r .
- *Stopping rule* (optional): dictate when to stop sampling .
- Sampling rule: pull an arm I_n and observe $X_n \sim \nu_{I_n}$.

Performance metrics

Fixed-confidence: given an error/confidence pair (ε, δ) ,

E Define an (ε, δ) -PAC stopping time $\tau_{\varepsilon, \delta}$, i.e.

$$
\mathbb{P}_{\nu}(\tau_{\varepsilon,\delta}<+\infty,\hat{\imath}_{\tau_{\varepsilon,\delta}}\notin\mathcal{I}_{\varepsilon}(\mu))\leq\delta.
$$

ε Minimize the **expected sample complexity** $\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]$.

Fixed-confidence: given an error/confidence pair (ε, δ) ,

E Define an (ε, δ) -PAC stopping time $\tau_{\varepsilon, \delta}$, i.e.

$$
\mathbb{P}_{\nu}(\tau_{\varepsilon,\delta}<+\infty,\hat{\imath}_{\tau_{\varepsilon,\delta}}\notin\mathcal{I}_{\varepsilon}(\mu))\leq\delta.
$$

- **ε** Minimize the **expected sample complexity** $\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]$.
- **Fixed-budget:** given an error/budget pair (ε, T) ,
- **EXECUTE:** Minimize the **probablity of** ε -error $\mathbb{P}_{\nu}(\hat{\imath}_T \notin \mathcal{I}_{\varepsilon}(\mu))$ at time T .

Fixed-confidence: given an error/confidence pair (ε, δ) ,

E Define an (ε, δ) -PAC stopping time $\tau_{\varepsilon, \delta}$, i.e.

$$
\mathbb{P}_{\nu}(\tau_{\varepsilon,\delta}<+\infty,\hat{\imath}_{\tau_{\varepsilon,\delta}}\notin\mathcal{I}_{\varepsilon}(\mu))\leq\delta.
$$

EXECTED Minimize the expected sample complexity $\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]$.

Fixed-budget: given an error/budget pair (ε, T) ,

EXECUTE: Minimize the **probablity of** ε -error $\mathbb{P}_{\nu}(\hat{\imath}_T \notin \mathcal{I}_{\varepsilon}(\mu))$ at time T .

Anytime: Control the **simple regret** $\mathbb{E}_{\nu}[\max_j \mu_j - \mu_{\hat{\imath}_n}]$ at any time n .

Lower bound on the expected sample complexity

[\(Garivier and Kaufmann, 2016;](#page-71-0) [Degenne and Koolen, 2019;](#page-71-1) [Agrawal et al., 2020\)](#page-71-2)

For all (ε, δ) -PAC algorithm and all instances $\nu \in \mathcal{D}^K$,

$$
\liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]}{\log(1/\delta)} \geq T_{\varepsilon}(\nu) ,
$$

Lower bound on the expected sample complexity

[\(Garivier and Kaufmann, 2016;](#page-71-0) [Degenne and Koolen, 2019;](#page-71-1) [Agrawal et al., 2020\)](#page-71-2)

For all (ε, δ) -PAC algorithm and all instances $\nu \in \mathcal{D}^K$,

$$
\liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]}{\log(1/\delta)} \geq T_{\varepsilon}(\nu) ,
$$

where the inverse of the characteristic time is

$$
T_{\varepsilon}(\nu)^{-1} = \max_{i \in \mathcal{I}_{\varepsilon}(\mu)} \max_{w \in \Delta_K} \min_{j \neq i} C_{\varepsilon}(i, j; \nu, w) ,
$$

reached at the optimal allocation $w_{\varepsilon}(\nu)$ and furthest answer $i_F(\nu)$.

Lower bound on the expected sample complexity

[\(Garivier and Kaufmann, 2016;](#page-71-0) [Degenne and Koolen, 2019;](#page-71-1) [Agrawal et al., 2020\)](#page-71-2)

For all (ε, δ) -PAC algorithm and all instances $\nu \in \mathcal{D}^K$,

$$
\liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]}{\log(1/\delta)} \geq T_{\varepsilon}(\nu) ,
$$

where the inverse of the characteristic time is

$$
T_{\varepsilon}(\nu)^{-1} = \max_{i \in \mathcal{I}_{\varepsilon}(\mu)} \max_{w \in \Delta_K} \min_{j \neq i} C_{\varepsilon}(i, j; \nu, w) ,
$$

reached at the optimal allocation $w_{\varepsilon}(\nu)$ and furthest answer $i_F(\nu)$.

Vanilla bandits for Gaussian with unit variance

$$
C_{\varepsilon}(i, j; \nu, w) = \mathbb{1} \left(\mu_i > \mu_j - \varepsilon \right) \frac{(\mu_i - \mu_j + \varepsilon)^2}{2(1/w_i + 1/w_j)}
$$

.

How to obtain an (ε, δ) -PAC algorithm ?

■ recommend the empirical best arm

$$
\hat{i}_n = \arg\max_{i \in [K]} \mu_{n,i},
$$

with $\mu_{n,i}=N_{n,i}^{-1}\sum_{t\in[n-1]}1\!\!1\,(I_t=i)\,X_t$ and $N_{n,i}=\sum_{t\in[n-1]}1\!\!1\,(I_t=i)$.

How to obtain an (ε, δ) -PAC algorithm ?

☞ recommend the empirical best arm

$$
\hat{\imath}_n = \arg\max_{i \in [K]} \mu_{n,i},
$$

with $\mu_{n,i}=N_{n,i}^{-1}\sum_{t\in[n-1]}1\!\!1\,(I_t=i)\,X_t$ and $N_{n,i}=\sum_{t\in[n-1]}1\!\!1\,(I_t=i)$.

☞ Generalized likelihood ratio (**GLR**) stopping rule

$$
\tau_{\varepsilon,\delta} = \inf \{ n \in \mathbb{N} \mid \min_{j \neq \hat{\imath}_n} C_{\varepsilon,n}(\hat{\imath}_n, j) > c(n-1,\delta) \},
$$

with $C_{\varepsilon,n}(i, j) = C_{\varepsilon}(i, j; \nu_n, N_n)$ and $c(n, \delta) \approx \log(1/\delta) + \mathcal{O}(\log n)$.

LE Univers

How to obtain an (ε, δ) -PAC algorithm ?

☞ recommend the empirical best arm

$$
\hat{i}_n = \arg\max_{i \in [K]} \mu_{n,i},
$$

with $\mu_{n,i}=N_{n,i}^{-1}\sum_{t\in[n-1]}1\!\!1\,(I_t=i)\,X_t$ and $N_{n,i}=\sum_{t\in[n-1]}1\!\!1\,(I_t=i)$.

☞ Generalized likelihood ratio (**GLR**) stopping rule

$$
\tau_{\varepsilon,\delta} = \inf \{ n \in \mathbb{N} \mid \min_{j \neq \hat{\imath}_n} C_{\varepsilon,n}(\hat{\imath}_n, j) > c(n-1,\delta) \},
$$

with $C_{\varepsilon,n}(i, j) = C_{\varepsilon}(i, j; \nu_n, N_n)$ and $c(n, \delta) \approx \log(1/\delta) + \mathcal{O}(\log n)$.

Vanilla bandits for Gaussian with unit variance

$$
C_{\varepsilon,n}(i,j) = \mathbb{1}(\mu_{n,i} > \mu_{n,j} - \varepsilon) \frac{(\mu_{n,i} - \mu_{n,j} + \varepsilon)^2}{2(1/N_{n,i} + 1/N_{n,j})}.
$$

Lower bound based sampling rules

Track-and-Stop [\(Garivier and Kaufmann, 2016\)](#page-71-0) At n, solve $w_n = w_{\varepsilon}(\nu_n)$.

Lower bound based sampling rules

Track-and-Stop [\(Garivier and Kaufmann, 2016\)](#page-71-0) At n, solve $w_n = w_{\varepsilon}(\nu_n)$.

Online optimization approach:

- **O** DKM [\(Degenne et al., 2019\)](#page-71-3),
- **FWS** [\(Wang et al., 2021\)](#page-73-0).

At n , get w_n from learner \mathcal{L}^K ; Feed loss $\ell_n(w)$ to learner \mathcal{L}^K .

Lower bound based sampling rules

Track-and-Stop [\(Garivier and Kaufmann, 2016\)](#page-71-0) At n, solve $w_n = w_{\varepsilon}(\nu_n)$.

Online optimization approach:

- DKM [\(Degenne et al., 2019\)](#page-71-3),
- **FWS** [\(Wang et al., 2021\)](#page-73-0).
- Top Two approach:
	- **O** LUCB [\(Kalyanakrishnan et al., 2012\)](#page-72-0),
	- **TTTS** [\(Russo, 2016\)](#page-72-1).
	- \bullet TTEI [\(Qin et al., 2017\)](#page-72-2).
	- **T3C** [\(Shang et al., 2020\)](#page-73-1).

At n , get w_n from learner \mathcal{L}^K ; Feed loss $\ell_n(w)$ to learner \mathcal{L}^K .

At n, set leader answer B_n : Set challenger answer $C_n \neq B_n$; Set target $\beta_n(B_n, C_n) \in [0,1]$; Set $I_n \in \{B_n, C_n\}$ with $\beta_n(B_n, C_n)$.

The greedy GLR-based sampling rule

At time $n < \tau_{\varepsilon,\delta}$,

- **candidate** (or **leader**) answer, $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$,
- **alternative** (or **challenger**) answer, $\hat{j}_n = \arg \min_{j \neq \hat{i}_n} C_{\varepsilon,n}(\hat{i}_n, j)$.

The greedy GLR-based sampling rule

At time $n < \tau_{\varepsilon,\delta}$,

- **candidate** (or **leader**) answer, $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$,
- **alternative** (or **challenger**) answer, $\hat{j}_n = \arg \min_{j \neq \hat{i}_n} C_{\varepsilon,n}(\hat{i}_n, j)$.

Since we don't stop, i.e. $C_{\varepsilon n}(\hat{i}_n, \hat{j}_n) \leq c(n-1,\delta)$, we want to

 \mathbb{R}^n verify that \hat{i}_n is better than \hat{j}_n ,

 \blacksquare hence we sample $I_n \in \{\hat{\imath}_n, \hat{\jmath}_n\}$.

The greedy GLR-based sampling rule

At time $n < \tau_{\varepsilon,\delta}$,

- **candidate** (or **leader**) answer, $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$,
- **alternative** (or **challenger**) answer, $\hat{j}_n = \arg \min_{j \neq \hat{i}_n} C_{\varepsilon,n}(\hat{i}_n, j)$.

Since we don't stop, i.e. $C_{\varepsilon n}(\hat{i}_n, \hat{j}_n) \leq c(n-1,\delta)$, we want to

 \mathbb{R} verify that \hat{i}_n is better than \hat{j}_n ,

 \blacksquare hence we sample $I_n \in \{\hat{\imath}_n, \hat{\jmath}_n\}$.

 \triangle When ε is small, this is too greedy in practice.

 \mathbb{F} Implicit exploration when selecting \hat{i}_n or \hat{j}_n .

The Top Two approach

Set a **leader** answer $B_n \in [K]$;

Set a **challenger** answer $C_n \in [K] \setminus \{B_n\}$;

Set a **target** $\beta_n(B_n, C_n) \in [0, 1]$;

Return $I_n \in \{B_n, C_n\}$ using target $\beta_n(B_n, C_n)$.

Leader answer $B_n \in [K]$

■ Empirical Best (EB) [\(Jourdan et al., 2022\)](#page-71-4), $\arg \max_{i \in [K]} \mu_{n,i}$.

Leader answer $B_n \in |K|$

- **Empirical Best** (EB) [\(Jourdan et al., 2022\)](#page-71-4), $\arg \max_{i \in [K]} \mu_{n,i}$.
- **ISS Upper Confidence Bound** (UCB) [\(Jourdan and Degenne, 2023\)](#page-71-5),

 $\arg \max U_{n,i}$ with $U_{n,i} = \arg \max \{\lambda \mid N_{n,i} \text{KL}(\mu_{n,i}, \lambda) \lesssim \log(n)\}\$. $i \in [K]$

Leader answer $B_n \in |K|$

- **Empirical Best** (EB) [\(Jourdan et al., 2022\)](#page-71-4), $\arg \max_{i \in [K]} \mu_{n,i}$.
- **ISS Upper Confidence Bound** (UCB) [\(Jourdan and Degenne, 2023\)](#page-71-5),

 $\arg \max U_{n,i}$ with $U_{n,i} = \arg \max \{\lambda \mid N_{n,i} \text{KL}(\mu_{n,i}, \lambda) \lesssim \log(n)\}\$. $i \in [K]$

☞ Thompson Sampling (TS) [\(Russo, 2016\)](#page-72-1),

$$
\underset{i \in [K]}{\arg \max} \ \theta_{n,i} \quad \text{with} \quad \theta_n \sim \Pi_n = \bigotimes_{i \in [K]} \Pi_{n,i} \ .
$$

Leader answer $B_n \in |K|$

- **Empirical Best** (EB) [\(Jourdan et al., 2022\)](#page-71-4), $\arg \max_{i \in [K]} \mu_{n,i}$.
- **ISS Upper Confidence Bound** (UCB) [\(Jourdan and Degenne, 2023\)](#page-71-5),

 $\arg \max U_{n,i}$ with $U_{n,i} = \arg \max \{\lambda \mid N_{n,i} \text{KL}(\mu_{n,i}, \lambda) \lesssim \log(n)\}\$. $i \in [K]$

☞ Thompson Sampling (TS) [\(Russo, 2016\)](#page-72-1),

$$
\underset{i \in [K]}{\arg \max} \ \theta_{n,i} \quad \text{with} \quad \theta_n \sim \Pi_n = \bigotimes_{i \in [K]} \Pi_{n,i} \ .
$$

Vanilla bandits for Gaussian with unit variance

 $U_{n,i} \approx \mu_{n,i} + \sqrt{2\log(n)/N_{n,i}} \quad \text{and} \quad \Pi_{n,i} = \mathcal{N}(\mu_{n,i}, 1/N_{n,i}) \ .$
Challenger answer $C_n \in [K] \setminus \{B_n\}$

☞ Transportation Cost (TC) [\(Shang et al., 2020\)](#page-73-0),

$$
\argmin_{j\neq B_n} C_{\varepsilon,n}(B_n,j).
$$

Challenger answer $C_n \in [K] \setminus \{B_n\}$

☞ Transportation Cost (TC) [\(Shang et al., 2020\)](#page-73-0),

$$
\argmin_{j\neq B_n} C_{\varepsilon,n}(B_n,j).
$$

Example 7 Transportation Cost Improved (TCI) [\(Jourdan et al., 2022\)](#page-71-0),

$$
\underset{j \neq B_n}{\arg \min} \left\{ C_{\varepsilon,n}(B_n, j) + \log N_{n,j} \right\} .
$$

Challenger answer $C_n \in [K] \setminus \{B_n\}$

☞ Transportation Cost (TC) [\(Shang et al., 2020\)](#page-73-0),

$$
\argmin_{j\neq B_n} C_{\varepsilon,n}(B_n,j).
$$

Example 7 Transportation Cost Improved (TCI) [\(Jourdan et al., 2022\)](#page-71-0),

$$
\underset{j \neq B_n}{\arg \min} \left\{ C_{\varepsilon,n}(B_n, j) + \log N_{n,j} \right\} .
$$

☞ Re-Sampling (RS) [\(Russo, 2016\)](#page-72-0),

$$
\underset{i\in[K]}{\arg\max}\ \theta_{n,i} \quad \text{with} \quad \theta_n \sim \Pi_n \quad \text{until} \quad B_n \notin \mathcal{I}_{\varepsilon}(\theta_n) \ .
$$

Target allocation $\beta_n(B_n, C_n) \in [0, 1]$

☞ **Fixed** design [\(Russo, 2016\)](#page-72-0),

$$
\beta_n(i,j) = \beta \in (0,1) .
$$

Target allocation $\beta_n(B_n, C_n) \in [0, 1]$

Eixed design [\(Russo, 2016\)](#page-72-0),

$$
\beta_n(i,j) = \beta \in (0,1) .
$$

☞ Optimal design **IDS** (Information Directed Selection) [\(You et al., 2023\)](#page-73-1),

$$
\beta_n(i,j) = \frac{N_{n,i}}{C_{\varepsilon,n}(i,j)} \frac{\partial C_{\varepsilon}}{\partial w_i}(i,j;\nu_n,N_n) ,
$$

when $\mu_{n,i} > \mu_{n,j} - \varepsilon$, and $\beta_n(i,j) = 1/2$ otherwise.

L Univers

Target allocation $\beta_n(B_n, C_n) \in [0, 1]$

Eixed design [\(Russo, 2016\)](#page-72-0),

$$
\beta_n(i,j) = \beta \in (0,1) .
$$

Optimal design IDS (Information Directed Selection) [\(You et al., 2023\)](#page-73-1),

$$
\beta_n(i,j) = \frac{N_{n,i}}{C_{\varepsilon,n}(i,j)} \frac{\partial C_{\varepsilon}}{\partial w_i}(i,j;\nu_n,N_n) ,
$$

when $\mu_{n,i} > \mu_{n,j} - \varepsilon$, and $\beta_n(i,j) = 1/2$ otherwise.

Vanilla bandits for Gaussian with unit variance

When $\mu_{n,i} > \mu_{n,j} - \varepsilon$, $\beta_n(i,j) = N_{n,i}/(N_{n,i} + N_{n,i})$.

Reaching the target

☞ Randomized [\(Russo, 2016\)](#page-72-0),

$$
I_n = \begin{cases} B_n & \text{with probability } \beta_n(B_n, C_n) , \\ C_n & \text{otherwise} . \end{cases}
$$

Reaching the target

☞ Randomized [\(Russo, 2016\)](#page-72-0),

$$
I_n = \begin{cases} B_n & \text{with probability } \beta_n(B_n, C_n) , \\ C_n & \text{otherwise} . \end{cases}
$$

ISS Tracking [\(Jourdan and Degenne, 2023\)](#page-71-1),

$$
I_n = \begin{cases} C_n & \text{if } N_{n,C_n}^{B_n} \le (1 - \overline{\beta}_{n+1}(B_n, C_n)) T_{n+1}(B_n, C_n) \,, \\ B_n & \text{otherwise} \,. \end{cases}
$$

with $N_{n,j}^i=\sum_{t\in[n-1]}1\mathbb{1}\left((B_t,C_t)=(i,j),I_t=j\right)$, $T_n(i,j)=\sum_{t\in[n-1]}1\mathbb{1}\left((B_t,C_t)=(i,j)\right)$ and $\overline{\beta}_n(i,j) = T_n(i,j)^{-1} \sum_{t \in [n-1]} \beta_t(i,j) \mathbb{1} ((B_t, C_t) = (i,j))$.

UL Univers
He de Litte

Asymptotic (β -)optimality

Theorem [\(Jourdan et al. 2022;](#page-71-0) [Jourdan and Degenne 2023;](#page-71-1) [Jourdan et al. 2023a\)](#page-72-1)

The Top Two sampling rule with any pair of leader/challenger satisfying some properties yields an (ε, δ) -PAC algorithm and, for all $\nu \in \mathcal{D}^K$ with unique best *arm (and distinct means for* $\varepsilon = 0$),

$$
\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]}{\log(1/\delta)} \leq \begin{cases} T_{\varepsilon}(\nu) & \text{[IDS]} \\ T_{\varepsilon,\beta}(\nu) & \text{[fixed } \beta \end{cases} \quad \text{with} \quad T_{\varepsilon,1/2}(\nu) \leq 2T_{\varepsilon}(\nu) .
$$

Asymptotic (β -)optimality

Theorem [\(Jourdan et al. 2022;](#page-71-0) [Jourdan and Degenne 2023;](#page-71-1) [Jourdan et al. 2023a\)](#page-72-1)

The Top Two sampling rule with any pair of leader/challenger satisfying some properties yields an (ε, δ) -PAC algorithm and, for all $\nu \in \mathcal{D}^K$ with unique best *arm (and distinct means for* $\varepsilon = 0$),

$$
\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}]}{\log(1/\delta)} \leq \begin{cases} T_{\varepsilon}(\nu) & \text{[IDS]} \\ T_{\varepsilon,\beta}(\nu) & \text{[fixed } \beta \end{cases} \quad \text{with} \quad T_{\varepsilon,1/2}(\nu) \leq 2T_{\varepsilon}(\nu) .
$$

Marc Jourdan **[The Top Two approach for pure exploration](#page-0-0)** June 14, 2024 22/35

Beyond Gaussian with unit variance

Empirical transportation cost for a class of distributions D ,

$$
C_{\varepsilon,n}(i,j) = \mathbb{1}(\mu_{n,i} > \mu_{n,j} - \varepsilon) \inf_{u \in \mathcal{I}} \left\{ N_{n,i} \mathcal{K}^-_{\inf}(\nu_{n,i}, u - \varepsilon) + N_{n,j} \mathcal{K}^+_{\inf}(\nu_{n,j}, u) \right\},
$$

where $\mathcal{K}^+_{\inf}(\nu, u) = \inf \{ \text{KL}(\nu, \kappa) \mid \kappa \in \mathcal{D}, \; \mathbb{E}_{X \sim \kappa}[X] > u \}$.

Beyond Gaussian with unit variance

Empirical transportation cost for a class of distributions D ,

$$
C_{\varepsilon,n}(i,j) = \mathbb{1} \left(\mu_{n,i} > \mu_{n,j} - \varepsilon \right) \inf_{u \in \mathcal{I}} \left\{ N_{n,i} \mathcal{K}_{\inf}^-(\nu_{n,i}, u - \varepsilon) + N_{n,j} \mathcal{K}_{\inf}^+(\nu_{n,j}, u) \right\},\,
$$

where $\mathcal{K}^+_{\inf}(\nu, u) = \inf \{ \text{KL}(\nu, \kappa) \mid \kappa \in \mathcal{D}, \; \mathbb{E}_{X \sim \kappa}[X] > u \}$.

☞ Gaussian with **unknown variance**,

$$
\mathcal{K}_{\inf}^+(\nu_{n,i}, u) = \mathbb{1} \left(\mu_{n,i} < u \right) \frac{1}{2} \log \left(1 + \frac{(\mu_{n,i} - u)^2}{\sigma_{n,i}^2} \right) \,,
$$

where $\mathcal{I} = \mathbb{R}$ and $\sigma_{n,i}^2 = N_{n,i}^{-1}$ $\sum_{i=1}^{i-1} \sum_{t \in [n-1]} 1\!\!1 (I_t = i) (X_t - \mu_{n,i})^2$.

Bounded distributions with known support $\mathcal{I} = [0, B]$.

O Let T_γ such that $\max_{i \neq i^\star}$ $\frac{N_{n,i}}{N_{n,i^\star}}-\frac{w_{\varepsilon,i}}{w_{\varepsilon,i^\star}}$ w_{ε,i^\star} $\vert \leq \gamma$ for all $n \geq T_{\gamma}$.

$$
\log(1/\delta) \approx_{\delta \to 0} c(n,\delta) \ge \min_{j \neq i_n} C_{\varepsilon,n}(\hat{i}_n,j) \approx_{n \ge T_\gamma} n T_{\varepsilon}(\nu)^{-1}.
$$

O Let T_γ such that $\max_{i \neq i^\star}$ $\frac{N_{n,i}}{N_{n,i^\star}}-\frac{w_{\varepsilon,i}}{w_{\varepsilon,i^\star}}$ w_{ε,i^\star} $\vert \leq \gamma$ for all $n \geq T_{\gamma}$.

$$
\log(1/\delta) \approx_{\delta \to 0} c(n,\delta) \ge \min_{j \neq i_n} C_{\varepsilon,n}(\hat{i}_n,j) \approx_{n \ge T_\gamma} n T_{\varepsilon}(\nu)^{-1}.
$$

- **❷ Sufficient exploration**, i.e. $\min_{i \in [K]} N_{n,i} \geq \sqrt{n/K}$ for n large.
- *If there are undersampled arms, then either the leader or the challenger is one of them. As it will be sampled, this yields a contradiction.*

O Let T_γ such that $\max_{i \neq i^\star}$ $\frac{N_{n,i}}{N_{n,i^\star}}-\frac{w_{\varepsilon,i}}{w_{\varepsilon,i^\star}}$ w_{ε,i^\star} $\vert \leq \gamma$ for all $n \geq T_{\gamma}$.

$$
\log(1/\delta) \approx_{\delta \to 0} c(n,\delta) \ge \min_{j \neq i_n} C_{\varepsilon,n}(\hat{i}_n,j) \approx_{n \ge T_\gamma} n T_{\varepsilon}(\nu)^{-1}.
$$

- **❷ Sufficient exploration**, i.e. $\min_{i \in [K]} N_{n,i} \geq \sqrt{n/K}$ for n large.
- *If there are undersampled arms, then either the leader or the challenger is one of them. As it will be sampled, this yields a contradiction.*
- \bullet **Convergence towards** $w_{\varepsilon}(\nu)$, i.e. $\mathbb{E}_{\nu}[T_{\nu}] < +\infty$ for γ small.

If an arm overshoots the ratio of optimal allocation with $i[*]$, then it will not *be chosen as challenger. Therefore, the ratio will converge.*

The $EB-TC_{\epsilon}$ algorithm [\(Jourdan et al., 2023b\)](#page-72-2) Vanilla bandits for Gaussian distributions with unit variance

Input: slack $\varepsilon > 0$, proportion $\beta \in (0,1)$ (only for fixed).

Set
$$
\hat{i}_n \in \arg \max_{i \in [K]} \mu_{n,i}
$$
 ;
\nSet $B_n = \hat{i}_n$;
\nSet $C_n \in \arg \min_{i \neq B_n} \frac{\mu_{n,B_n} - \mu_{n,i} + \varepsilon}{\sqrt{1/N_{n,B_n} + 1/N_{n,i}}}$;
\nSet $\overline{\beta}_{n+1}(B_n, C_n)$ with $\beta_n(i, j) = \begin{cases} \beta & \text{[fixed]} \\ \frac{N_{n,j}}{N_{n,i} + N_{n,j}} & \text{[IDS]} \end{cases}$;
\nSet $I_n = \begin{cases} C_n & \text{if } N_{n,C_n}^{B_n} \leq (1 - \overline{\beta}_{n+1}(B_n, C_n)) T_{n+1}(B_n, C_n), \\ B_n & \text{otherwise} \end{cases}$,

Output: next arm to sample I_n and next recommendation \hat{i}_n .

Expected sample complexity

Theorem [\(Jourdan et al. 2023b\)](#page-72-2)

EB-TC^ε *with IDS (resp. fixed* β *) proportions is* (ε, δ)*-PAC and* **asymptotically** *(resp.* β*-)***optimal** *for* ε*-BAI on instances with unique best arm.*

Theorem [\(Jourdan et al. 2023b\)](#page-72-2)

EB-TC^ε *with IDS (resp. fixed* β *) proportions is* (ε, δ)*-PAC and* **asymptotically** *(resp.* β*-)***optimal** *for* ε*-BAI on instances with unique best arm.*

On any instances, EB-TC^ε *with fixed* β = 1/2 *satisfies that*

$$
\mathbb{E}_{\nu}[\tau_{\varepsilon,\delta}] \le \inf_{x \in [0,\varepsilon]} \max \left\{ T_{\nu,\varepsilon}(\delta,x) + 1, \ S_{\nu,\varepsilon}(x) \right\} + 2K^2 \,, \quad \text{where}
$$

$$
\lim_{\delta \to 0} \frac{T_{\mu,\varepsilon}(\delta,0)}{\log(1/\delta)} \leq 2|i^{\star}(\mu)|T_{\varepsilon,1/2}(\nu), S_{\nu,\varepsilon}(\varepsilon/2) = \mathcal{O}(K^2|\mathcal{I}_{\varepsilon/2}(\mu)|\varepsilon^{-2}\log \varepsilon^{-1}).
$$

Any time and uniform probability of ε -error

Theorem [\(Jourdan et al. 2023b\)](#page-72-2)

EB-TC_ε with fixed $\beta = 1/2$ *satisfies that, for all* $n > 5K^2/2$ *and all* $\tilde{\varepsilon} > 0$ *,*

$$
\mathbb{P}_{\nu}(\hat{\imath}_n \notin \mathcal{I}_{\tilde{\varepsilon}}(\mu)) \le \exp\left(-\Theta\left(\frac{n}{H_{\tilde{\imath}_{\mu}(\tilde{\varepsilon})}(\mu,\varepsilon)}\right)\right) ,
$$

where $H_1(\mu, \varepsilon) = K(2\Delta_{\min}^{-1} + 3\varepsilon^{-1})^2$ and $H_i(\mu, \varepsilon) = \Theta(K/\Delta_{i+1}^{-2})$ *. Ordered* ${\sf distinct\ mean\ gaps\ } (\Delta_i)_{i\in [C_{\mu}]}$ and $i_{\mu}(\widetilde{\varepsilon})=i$ if $\widetilde{\varepsilon}\in [\Delta_i,\Delta_{i+1})$.

Any time and uniform probability of ε -error

Theorem [\(Jourdan et al. 2023b\)](#page-72-2)

EB-TC_ε with fixed $\beta = 1/2$ *satisfies that, for all* $n > 5K^2/2$ *and all* $\tilde{\varepsilon} > 0$ *,*

$$
\mathbb{P}_{\nu}\left(\hat{\imath}_{n} \notin \mathcal{I}_{\tilde{\varepsilon}}(\mu)\right) \leq \exp\left(-\Theta\left(\frac{n}{H_{i_{\mu}(\tilde{\varepsilon})}(\mu,\varepsilon)}\right)\right) ,
$$

where $H_1(\mu, \varepsilon) = K(2\Delta_{\min}^{-1} + 3\varepsilon^{-1})^2$ and $H_i(\mu, \varepsilon) = \Theta(K/\Delta_{i+1}^{-2})$ *. Ordered* ${\sf distinct\ mean\ gaps\ } (\Delta_i)_{i\in [C_{\mu}]}$ and $i_{\mu}(\widetilde{\varepsilon})=i$ if $\widetilde{\varepsilon}\in [\Delta_i,\Delta_{i+1})$.

Policy playing $(\hat{i}_n)_{n>K}$:

☞ Anytime expected simple regret with exponential decay.

 $\bullet\,$ For all $\delta\in(0,1],$ let $T_{\tilde\varepsilon}(\delta)$ and $(\mathcal E_{n,\delta})_n$ such that $\max_n\mathbb P_\nu(\mathcal E_{n,\delta}^\complement)\leq\delta$ and $\{\hat{\imath}_n \notin \mathcal{I}_{\tilde{\varepsilon}}(\mu)\} \subset \mathcal{E}_{n,\delta}^{\complement}$ for all $n > T_{\tilde{\varepsilon}}(\delta)$. Then,

 $\mathbb{P}_{\nu}(\hat{\imath}_n \notin \mathcal{I}_{\tilde{\varepsilon}}(\mu)) \leq \inf\{\delta \mid n > T_{\tilde{\varepsilon}}(\delta)\}\.$

 $\bullet\,$ For all $\delta\in(0,1],$ let $T_{\tilde\varepsilon}(\delta)$ and $(\mathcal E_{n,\delta})_n$ such that $\max_n\mathbb P_\nu(\mathcal E_{n,\delta}^\complement)\leq\delta$ and $\{\hat{\imath}_n \notin \mathcal{I}_{\tilde{\varepsilon}}(\mu)\} \subset \mathcal{E}_{n,\delta}^{\complement}$ for all $n > T_{\tilde{\varepsilon}}(\delta)$. Then,

 $\mathbb{P}_{\nu}(\hat{\imath}_n \notin \mathcal{I}_{\tilde{\varepsilon}}(\mu)) \leq \inf\{\delta \mid n > T_{\tilde{\varepsilon}}(\delta)\}\.$

❷ A necessary condition for error: undersampled arms still exist.

❸ If there are undersampled arms, there is an arm which is selected either as leader or challenger and has a bounded selection count.

Key observation: *The number of times one can increment a bounded positive variable by one is also bounded.*

Crop-management task Bounded instance with $K=4$ at $(\varepsilon,\delta)=(0,10^{-2}),$ Top Two with fixed design $\beta=1/2$

Figure: Empirical stopping time (a) on scaled DSSAT instances with their density and mean (b). Lower bound is $T_0(\nu) \log(1/\delta)$.

Crop-management task Bounded instance with $K=4$ at $(\varepsilon,\delta)=(0,10^{-2}),$ Top Two with fixed design $\beta=1/2$

Figure: Empirical stopping time (a) on scaled DSSAT instances with their density and mean (b). Lower bound is $T_0(\nu) \log(1/\delta)$.

Crop-management task Bounded instance with $K=4$ at $(\varepsilon,\delta)=(0,10^{-2}),$ Top Two with fixed design $\beta=1/2$

Figure: Empirical stopping time (a) on scaled DSSAT instances with their density and mean (b). Lower bound is $T_0(\nu) \log(1/\delta)$.

Empirical stopping time

Gaussian instances $\mu_i = 1 - \frac{(i-1)^{\alpha}}{(K-1)^{\alpha}}$ for $\alpha = 0.6$ with varying K at $(\varepsilon, \delta) = (10^{-1}, 10^{-2})$

Empirical simple regret

Gaussian instance $\mu \in \{0.6, 0.4\}^{10}$ with $|\mathcal{I}_0(\mu)| = 2$, EB-TC_{ε} uses $(\varepsilon, \beta) = (0.1, 1/2)$

Transductive linear bandits

Mean vector $\theta \in \mathbb{R}^d$, set of arms $\mathcal{A} \subseteq \mathbb{R}^d$ and answers $\mathcal{Z} \subseteq \mathbb{R}^d$.

Goal: Identify one answer in $\mathcal{Z}_{\varepsilon}(\theta) = \{z \mid \langle \theta, z \rangle \ge \max_{x} \langle \theta, x \rangle - \varepsilon \}$.

Transductive linear bandits

Mean vector $\theta \in \mathbb{R}^d$, set of arms $\mathcal{A} \subseteq \mathbb{R}^d$ and answers $\mathcal{Z} \subseteq \mathbb{R}^d$.

Goal: Identify one answer in $\mathcal{Z}_{\varepsilon}(\theta) = \{z \mid \langle \theta, z \rangle \ge \max_{x} \langle \theta, x \rangle - \varepsilon \}$.

$$
T_{\varepsilon}(\nu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}(\mu)} \max_{w \in \Delta_K} \min_{x \neq z} C_{\varepsilon}(z, x; \nu, w) .
$$

Transductive linear bandits for Gaussian with unit variance

$$
C_{\varepsilon}(z,x;\nu,w)=\mathbb{1}\left(\langle\theta,z-x\rangle\rangle-\varepsilon\right)\frac{\left(\langle\theta,z-x\rangle+\varepsilon\right)^{2}}{2\|z-x\|_{V_w^{-1}}^2}\,,
$$

with $V_w = \sum_a w_a a a^\top$ is the design matrix of the allocation $w \in \triangle_K$.

The structured Top Two approach

Set a **leader** answer $B_n \in \mathcal{Z}$;

Set a **challenger** answer $C_n \in \mathcal{Z} \setminus \{B_n\}$;

Set a **target** $\beta_n(B_n, C_n) \in \Delta_K$;

Return $I_n \in \mathcal{A}$ using target $\beta_n(B_n, C_n)$.

The $L \in TT$ algorithm

Subproblem: **known** θ and $\varepsilon = 0$, leader $z^* = \arg \max_{z \in \mathcal{Z}} \langle \theta, z \rangle$.

The $L \in \mathsf{T}$ T algorithm

Subproblem: **known** θ and $\varepsilon = 0$, leader $z^* = \arg \max_{z \in \mathcal{Z}} \langle \theta, z \rangle$.

Sequentially learned components $(q_n, w_n) \in \triangle_{Z-1} \times \triangle_K$ ☞ **TC challenger**, **Frank-Wolfe** step

$$
C_n \in \argmin_{x \neq z^\star} C(x, w_n) \quad \text{with} \quad C(x, w) = \frac{\langle \theta, z^\star - x \rangle^2}{2 \| z^\star - x \|_{V_w^{-1}}^2}
$$

☞ **IDS target**, **normalized reweighted gradient** step

$$
\beta_n(C_n) = w_n \odot \nabla_w C(C_n, w_n) / C(C_n, w_n) .
$$

Then, update
$$
\begin{bmatrix} q_{n+1} \\ w_{n+1} \end{bmatrix} = \left(1 - \frac{1}{n+1}\right) \begin{bmatrix} q_n \\ w_n \end{bmatrix} + \frac{1}{n+1} \begin{bmatrix} \mathbf{1}_{C_n} \\ \beta_n(C_n) \end{bmatrix}.
$$

.

The $L \in \mathsf{T}$ T algorithm

Subproblem: **known** θ and $\varepsilon = 0$, leader $z^* = \arg \max_{z \in \mathcal{Z}} \langle \theta, z \rangle$.

Sequentially learned components $(q_n, w_n) \in \Delta_{Z-1} \times \Delta_K$ ☞ **TC challenger**, **Frank-Wolfe** step

$$
C_n \in \argmin_{x \neq z^\star} C(x, w_n) \quad \text{with} \quad C(x, w) = \frac{\langle \theta, z^\star - x \rangle^2}{2 \| z^\star - x \|_{V_w^{-1}}^2}
$$

☞ **IDS target**, **normalized reweighted gradient** step

$$
\beta_n(C_n) = w_n \odot \nabla_w C(C_n, w_n) / C(C_n, w_n) .
$$

Then, update
$$
\begin{bmatrix} q_{n+1} \\ w_{n+1} \end{bmatrix} = \left(1 - \frac{1}{n+1}\right) \begin{bmatrix} q_n \\ w_n \end{bmatrix} + \frac{1}{n+1} \begin{bmatrix} \mathbf{1}_{C_n} \\ \beta_n(C_n) \end{bmatrix}.
$$

Open problem: **Show the convergence towards a saddle point of**

max min $\langle q, C(\cdot, w) \rangle$. $w \in \triangle_K q \in \triangle_{Z-1}$

.

Conclusion

The **Top Two approach** meets our requirements !

To be advocated by statisticians:

quarantees on the quality of the recommendation,

empirically competitive.

To be used by practitioners:

- \checkmark simple,
- \checkmark interpretable,
- $\sqrt{\,}$ generalizable,
- ✓ versatile.

The **Top Two approach** meets our requirements !

To be advocated by statisticians:

quarantees on the quality of the recommendation,

 \checkmark empirically competitive.

To be used by practitioners:

- \checkmark simple,
- \checkmark interpretable,
- $\sqrt{\ }$ generalizable,
- ✓ versatile.

Perspectives:

- structured Top Two approach,
- anytime setting,
- **•** privacy, safety and fairness.

References I

Agrawal, S., Juneja, S., and Glynn, P. W. (2020). Optimal δ-correct best-arm selection for heavy-tailed distributions. In *Algorithmic Learning Theory (ALT)*.

Audibert, J.-Y., Bubeck, S., and Munos, R. (2010). Best Arm Identification in Multi-armed Bandits. In *Conference on Learning Theory*.

Carpentier, A. and Locatelli, A. (2016). Tight (lower) bounds for the fixed budget best arm identification bandit problem. In *Proceedings of the 29th Conference on Learning Theory (COLT)*.

Degenne, R. (2023). On the existence of a complexity in fixed budget bandit identification. *International Conference on Learning Theory (COLT)*.

Degenne, R. and Koolen, W. M. (2019). Pure exploration with multiple correct answers. In *Advances in Neural Information Processing Systems (NeurIPS)*.

- Degenne, R., Koolen, W. M., and Ménard, P. (2019). Non-asymptotic pure exploration by solving games. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Degenne, R., Shao, H., and Koolen, W. M. (2020). Structure adaptive algorithms for stochastic bandits. In *International Conference on Machine Learning (ICML)*.
- Garivier, A. and Kaufmann, E. (2016). Optimal best arm identification with fixed confidence. In *Proceedings of the 29th Conference On Learning Theory*.
- Jourdan, M. and Degenne, R. (2023). Non-asymptotic analysis of a ucb-based top two algorithm. *Thirty-Seventh Conference on Neural Information Processing Systems*.
- Jourdan, M., Degenne, R., Baudry, D., De Heide, R., and Kaufmann, E. (2022). Top two algorithms revisited. *Advances in Neural Information Processing Systems*.
References II

- Jourdan, M., Degenne, R., and Kaufmann, E. (2023a). Dealing with unknown variances in best-arm identification. *International Conference on Algorithmic Learning Theory*.
- Jourdan, M., Degenne, R., and Kaufmann, E. (2023b). An ε-best-arm identification algorithm for fixed-confidence and beyond. *Thirty-Seventh Conference on Neural Information Processing Systems*.

Jourdan, M. and Réda, C. (2023). An anytime algorithm for good arm identification. *arXiv preprint arXiv:2310.10359*.

- Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P. (2012). PAC subset selection in stochastic multi-armed bandits. In *International Conference on Machine Learning (ICML)*.
- Kano, H., Honda, J., Sakamaki, K., Matsuura, K., Nakamura, A., and Sugiyama, M. (2019). Good arm identification via bandit feedback. *Machine Learning*, 108(5):721–745.
- Karnin, Z., Koren, T., and Somekh, O. (2013). Almost optimal Exploration in multi-armed bandits. In *International Conference on Machine Learning (ICML)*.
- Komiyama, J., Tsuchiya, T., and Honda, J. (2022). Minimax optimal algorithms for fixed-budget best arm identification. In *Advances in Neural Information Processing Systems*.
- Qin, C., Klabjan, D., and Russo, D. (2017). Improving the expected improvement algorithm. In *Advances in Neural Information Processing Systems 30 (NIPS)*.
- Riou, C. and Honda, J. (2020). Bandit algorithms based on thompson sampling for bounded reward distributions. In *Algorithmic Learning Theory (ALT)*.
- Russo, D. (2016). Simple Bayesian algorithms for best arm identification. In *Proceedings of the 29th Conference on Learning Theory (COLT)*.

Shang, X., de Heide, R., Kaufmann, E., Ménard, P., and Valko, M. (2020). Fixed-confidence guarantees for bayesian best-arm identification. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*.

Wang, P.-A., Ariu, K., and Proutiere, A. (2024). On universally optimal algorithms for a/b testing.

Wang, P.-A., Tzeng, R.-C., and Proutiere, A. (2021). Fast pure exploration via frank-wolfe. *Advances in Neural Information Processing Systems*.

You, W., Qin, C., Wang, Z., and Yang, S. (2023). Information-directed selection for top-two algorithms. In *The Thirty Sixth Annual Conference on Learning Theory*, pages 2850–2851. PMLR.