On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence

Achraf Azize, Marc Jourdan, Aymen Al Marjani and Debabrota Basu

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

NeurIPS 2023

Best Arm identification

Objective: Identify the arm with the highest mean $a^* \triangleq \operatorname{argmax}_{a \in [K]} \mu_a$ Privacy Concern: Rewards may reveal sensitive information about individuals

Objective: Find the most effective medicine between K candidates

Objective: Find the most effective medicine between K candidates

Reward: r = 1 if the patient is cured, r = 0 if not cured

Objective: Find the most effective medicine between K candidates

Reward: r = 1 if the patient is cured, r = 0 if not cured

For each round $t=1,\ldots$,

- A new patient p_t arrives
- The agent chooses a medicine $a_t \in [K]$ based on the history $\mathcal{H}_{t-1} \triangleq \{a_1, r_1, \dots, a_{t-1}, r_{t-1}\}$
- The agent observes the reaction r_t of patient p_t to medicine a_t
- If the agent decides to stop:
 - The agent proposes a guess â of a^{*}
 - Stop

Objective: Find the most effective medicine between K candidates

Reward: r = 1 if the patient is cured, r = 0 if not cured

For each round $t=1,\ldots$,

- A new patient p_t arrives
- The agent chooses a medicine $a_t \in [K]$ based on the history $\mathcal{H}_{t-1} \triangleq \{a_1, r_1, \dots, a_{t-1}, r_{t-1}\}$
- The agent observes the reaction r_t of patient p_t to medicine a_t
- If the agent decides to stop:
 - The agent proposes a guess â of a*
 - Stop

Privacy: A patient's reaction to a medicine can reveal sensitive information about their health conditions

Differential Privacy Background

Intuition: Indistinguishability from the mass

Definition: [Dwork and Roth, 2014] A randomised algorithm \mathcal{A} satisfies ϵ -DP if for any two neighbouring datasets d and d' that differ only in one row, i.e $d \sim d'$, and for all sets of output $\mathcal{O} \subseteq \text{Range}(\mathcal{A})$,

$$\Pr[\mathcal{A}(d) \in \mathcal{O}] \leq e^{\epsilon} \Pr[\mathcal{A}(d') \in \mathcal{O}]$$

$\epsilon\text{-global}$ DP BAI

Definition: π satisfies ϵ -global DP, if $\forall T \ge 1$, $\forall \underline{\mathbf{d}}^T \sim \underline{\mathbf{d}'}^T, \forall \underline{\mathbf{a}}^T$ and $\widehat{\mathbf{a}}$, $\pi(\underline{\mathbf{a}}^T, \widehat{\mathbf{a}}, T \mid \underline{\mathbf{d}}^T) \le e^{\epsilon} \pi(\underline{\mathbf{a}}^T, \widehat{\mathbf{a}}, T \mid \underline{\mathbf{d}'}^T).$

Main Question and Contributions

Main Question: What is the cost of ϵ -global DP in BAI?

Contributions:

- \blacksquare We provide a lower bound on the sample complexity of any $\delta\text{-correct}$ $\epsilon\text{-global DP BAI strategy}$
- We design a near-optimal algorithm matching the sample complexity lower bound, up to multiplicative constants

Lower Bound

Our Results

Theorem: For any δ -correct ϵ -global DP BAI strategy, we have that

$$\mathbb{E}_{oldsymbol{
u}}[au] \geq \max\left(extsf{T}^{\star}_{ extsf{KL}}(oldsymbol{
u}), rac{1}{6\epsilon} extsf{T}^{\star}_{ extsf{TV}}(oldsymbol{
u})
ight) \log(1/3\delta),$$

where $(T_{\mathbf{d}}^{\star}(\boldsymbol{\nu}))^{-1} \triangleq \sup_{\omega \in \Sigma_{K}} \inf_{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{a=1}^{K} \omega_{a} \mathbf{d}(\nu_{a}, \lambda_{a}),$ and **d** is either KL or TV.

Lower Bound

Our Results

Theorem: For any δ -correct ϵ -global DP BAI strategy, we have that

$$\mathbb{E}_{oldsymbol{
u}}[au] \geq \max\left(\mathcal{T}^{\star}_{\mathrm{KL}}(oldsymbol{
u}), rac{1}{6\epsilon} \mathcal{T}^{\star}_{\mathrm{TV}}(oldsymbol{
u})
ight) \log(1/3\delta),$$

where $(T_{\mathbf{d}}^{\star}(\boldsymbol{\nu}))^{-1} \triangleq \sup_{\omega \in \Sigma_{\kappa}} \inf_{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{a=1}^{\kappa} \omega_{a} \mathbf{d}(\nu_{a}, \lambda_{a}),$ and **d** is either KL or TV.

Properties: Let $\Delta_a \triangleq \mu_1 - \mu_a$ be the gap between the means. $T_{\rm KL}^{\star}(\boldsymbol{\nu}) \approx \sum_{a} \frac{1}{\Delta_a^2}$ [Garivier and Kaufmann, 2016] and $T_{\rm TV}^{\star}(\boldsymbol{\nu}) \approx \sum_{a} \frac{1}{\Delta_a}$.

Pinsker: $T_{\text{TV}}^{\star}(\boldsymbol{\nu}) \geq \sqrt{2T_{\text{KL}}^{\star}(\boldsymbol{\nu})}$.

Lower Bound

Discussion

$$\mathbb{E}_{\boldsymbol{\nu}}[\tau] \geq \max\left(\mathcal{T}^{\star}_{\mathrm{KL}}(\boldsymbol{\nu}), \frac{1}{6\epsilon}\mathcal{T}^{\star}_{\mathrm{TV}}(\boldsymbol{\nu})\right)\log(1/3\delta)$$

Two hardness regimes depending on ϵ and the environment ν :

- Low-privacy regime: When $\epsilon > \frac{T_{TV}^{\star}(\nu)}{6T_{KL}^{\star}(\nu)}$, the lower bound retrieves the non-private $T_{KL}^{\star}(\nu)$ lower bound and privacy can be achieved for free.
- High-privacy regime: When $\epsilon < \frac{T^*_{\text{TV}}(\nu)}{6T^*_{\text{KL}}(\nu)}$, the lower bound becomes $\frac{1}{6\epsilon}T^*_{\text{TV}}(\nu)$ and ϵ -global DP δ -BAI requires more samples than non-private ones.

Top Two Algorithm

Top Two Algorithm

Intuition: The Top Two sampling rule consist of:

- Choosing a leader $B_n \in [K]$
- Choosing a challenger $C_n \in [K] \setminus \{B_n\}$
- Sampling B_n with probability β , else sampling C_n

Top Two Algorithm

Intuition: The Top Two sampling rule consist of:

- Choosing a leader $B_n \in [K]$
- Choosing a challenger $C_n \in [K] \setminus \{B_n\}$
- Sampling B_n with probability β , else sampling C_n

The recommendation rule: recommend the empirical best-arm

$$\widehat{a}_n = \operatorname*{argmax}_{a \in [K]} \widehat{\mu}_{n,a}$$

Top Two Algorithm

Intuition: The Top Two sampling rule consist of:

- Choosing a leader $B_n \in [K]$
- Choosing a challenger $C_n \in [K] \setminus \{B_n\}$
- Sampling B_n with probability β , else sampling C_n

The recommendation rule: recommend the empirical best-arm

$$\widehat{a}_n = \operatorname*{argmax}_{a \in [K]} \widehat{\mu}_{n,a}$$

The stopping rule is based on a calibrated GLR

$$au_{\delta} = \inf\{n \mid \min_{j \neq \widehat{a}_n} W_n(\widehat{a}_n, j) > c(n, \delta)\},$$

where $c(n, \delta)$ is a calibrated threshold and $W_n(i, j)$ is the empirical transportation cost between arms (i, j).

Private Top Two

To make the Top Two algorithm satisfy $\epsilon\text{-global DP},$ we

Private Top Two

To make the Top Two algorithm satisfy $\epsilon\text{-global}$ DP, we

- Estimate the sequence of empirical means $(\hat{\mu}_{a,n})$ privately, i.e. $(\tilde{\mu}_{a,n}) = (\hat{\mu}_{a,n}) + \frac{1}{\epsilon}Lap$, using
 - Per-arm doubling
 - Forgetting
 - Adding calibrated Laplace noise

Private Top Two

To make the Top Two algorithm satisfy $\epsilon\text{-global}$ DP, we

- Estimate the sequence of empirical means $(\hat{\mu}_{a,n})$ privately, i.e. $(\tilde{\mu}_{a,n}) = (\hat{\mu}_{a,n}) + \frac{1}{\epsilon}Lap$, using
 - Per-arm doubling
 - Forgetting
 - Adding calibrated Laplace noise
- Count for the noise in:
 - ▶ The sampling rule: leader and challenger based on the private $(\tilde{\mu}_{a,n})$
 - ► The recommendation rule: Recommend $\hat{a}_n = \operatorname{argmax}_{a \in [K]} \tilde{\mu}_{n,a}$
 - The stopping rule: re-calibrate the GLR threshold $\tilde{c}(n,\delta) = c(n,\delta) + \frac{1}{\epsilon}c_2(n,\delta)$

Privacy and sample complexity

Theorem: For Bernoulli instances verifying that $\exists C \geq 1$ such that $\Delta_{\max}/\Delta_{\min} \leq C$ and $\beta = 1/2$, AdaP-TT is ϵ -global DP, δ -correct and satisfies

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\log(1/\delta)} \leq c \ \max\left\{T_{\mathrm{KL}}^{\star}(\boldsymbol{\mu}), C\frac{T_{\mathsf{TV}}^{\star}(\boldsymbol{\mu})}{\epsilon}\right\}$$

where c is a universal constant.

Matches the lower bound up to constants

Experimental Analysis

Figure: Evolution of the stopping time τ of AdaP-TT, DP-SE, and TTUCB with respect to the privacy budget ϵ for $\delta = 10^{-2}$ on two Bernoulli instances. The shaded vertical line separates the two privacy regimes. AdaP-TT outperforms DP-SE.

Conclusion and Future Work

Conclusion: We derive sample complexity lower bounds and matching upper bounds for BAI with ϵ -global DP.

Future Work:

- Close the multiplicative gap between the lower and upper bounds.
- Extend the analysis to other DP settings, like (ϵ, δ) -DP and Rényi-DP.
- Extend the analysis to other trust models, like local DP and shuffle DP.

Thank you for your interest in the paper

Come see us at the poster session!

Bibliography I

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends $^{\mbox{\scriptsize B}}$ in Theoretical Computer Science, 9(3–4):211–407.

Garivier, A. and Kaufmann, E. (2016).

Optimal best arm identification with fixed confidence. In Conference on Learning Theory, pages 998–1027. PMLR.