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FC-BAI with ϵ-global Differential Privacy

Setting: Clinical trials with K candidate medicines

Medicine 1 Medicine 2 Medicine 3 Medicine K

Goal: Find the medicine with the highest mean a⋆ ≜ argmaxa∈[K] pa.

Constraint: Protect the privacy of the patients. A patient’s reaction to
a medicine can reveal sensitive information about health conditions.

Interaction Protocol: For the t-th patient in the study:

1. The doctor π chooses a Medicine at ∈ {1, . . . ,K}

2. The doctor observes a reward rt ∈ {0, 1} such that rt ∼
Bernouli(pat)

Stop the interaction at time τ and Recommend a final guess â ∈ [K]

Correctness: A BAI strategy π is δ-correct for a classM, if for every
instance ν ∈M,

Pν,π(τ <∞, â = a⋆(ν)) ≥ 1− δ.

Definition: π satisfies ϵ-global DP, if ∀T ≥ 1, ∀dT ∼ d′T ,∀aT and â,

π(aT , â, T | dT ) ≤ eϵπ(aT , â, T | d′T )
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Contributions
1. Lower bound on the sample complexity of δ-correct ϵ-global DP

BAI strategies.

2. Algorithm design: an ϵ-global DP variant of Top Two algorithms
named AdaP-TT

3. Analysis of AdaP-TT: Enjoys both theoretical near-optimality and
good experimental performance.

Algorithm Design
Main Ingredients:

1. Per-arm doubling (Line 5).

2. Forgetting (Line 8).

3. Adding Laplace noise (Line 9).

Algorithm 1 AdaP-TT
1: Input: β ∈ (0, 1), risk δ ∈ (0, 1), privacy budget ϵ, thresholds

cϵ,k1,k2
:N2 × (0, 1)→ R+

2: Output: Recommendation â and Stopping time τ satisfying ϵ-global
DP

3: Initialization: ∀a ∈ [K], pull arm a, set ka = 1, T1(a) = K+1,Ln,a = 0,
Nn,a = 1, n = K + 1.

4: for n > K do
5: if there exists a ∈ [K] such that Nn,a ≥ 2NTka (a),a

then
6: Change phase ka ← ka + 1 for this arm a
7: Set Tka(a) = n and Ñka,a = NTka (a),a

−NTka−1(a),a

8: Set µ̂ka,a = Ñ−1
ka,a

∑Tka (a)−1

s=Tka−1(a)
Xs1 {Is = a}

9: Set µ̃ka,a = µ̂ka,a + Yka,a where Yka,a ∼ Lap((ϵÑka,a)
−1)

10: end if
11: Set ân = argmaxb∈[K] µ̃kb,b

12: if
(µ̃kân

,ân−µ̃kb,b
)2

1/Ñkân
,ân+1/Ñkb,b

≥ 2cϵ,kân ,kb
(Ñkân ,ân , Ñkb,b, δ) ∀b ̸= ân then

13: return (ân, n)
14: end if
15: Set Bn = argmaxa∈[K]{µ̃ka,a +

√
ka/Ñka,a + ka/(ϵÑka,a)}

16: Set Cn = argmina̸=Bn

µ̃kBn
,Bn−µ̃ka,a√

1/Nn,Bn+1/Nn,a

17: Set In = Bn if NBn

n,Bn
≤ βLn+1,Bn , else In = Cn

18: Pull In and observe Xn ∼ νIn
19: Set Nn+1,In ← Nn,In + 1, NBn

n+1,In
← NBn

n,In
+ 1 and Ln+1,Bn

←
Ln,Bn

+ 1. Set n← n+ 1
20: end for

Privacy analysis: For rewards in [0, 1], AdaP-TT is ϵ-global DP. A
change in one user only affects the empirical mean at one episode of
an arm, which is made private using the Laplace Mechanism.

Correctness: AdaP-TT is δ-correct for thresholds which verify

c̃ϵ,k1,k2(n,m, δ) ≈ log(1/δ) + (1/n+ 1/m) log(1/δ)2/ϵ2 .

Upper bound on expected sample complexity: For Bernoulli in-
stances verifying that ∃C ≥ 1 such that ∆max/∆min ≤ C , AdaP-TT is
ϵ-global DP, δ-correct and satisfies

lim supδ→0
Eµ[τδ]
log(1/δ) ≤ c max

{
T ⋆
KL(µ), C

T⋆
TV(µ)

ϵ

}
.

Comparison to DP-SE: DP-SE has two drawbacks:
1. DP-SE is less adaptive thanAdaP-TT, i.e. in a phase, DP-SE continues
to sample arms that might already be known to be bad.
2. AdaP-TT is anytime, i.e. its sampling does not depend on the risk δ.

Sample complexity lower bound
The lower bound: Let δ ∈ (0, 1) and ϵ > 0. For any δ-correct ϵ-global DP
BAI strategy, we have that

Eν,π[τ ] ≥ max

(
T ⋆
KL(ν),

1

6ϵ
T ⋆
TV(ν)

)
log(1/3δ),

(T ⋆
d (ν))

−1 ≜ supω∈ΣK
infλ∈Alt(ν)

∑K
a=1 ωad(νa, λa), d is either KL or TV.

Simplification: T ⋆
KL(ν) ≈

∑
a

1
(µa⋆−µa)2

and T ⋆
TV(ν) ≈

∑
a

1
µa⋆−µa

Consequences: Two hardness regimes depending on ϵ and ν:

• Low-privacy regime: when ϵ >
T⋆
TV(ν)

6T⋆
KL(ν)

, privacy can be achieved for
free.

• High-privacy regime: when ϵ <
T⋆
TV(ν)

6T⋆
KL(ν)

, the ϵ-global constraint re-
quires more samples than non-private ones.

Pinsker inequality: T ⋆
TV(ν) ≥

√
2T ⋆

KL(ν).

DP and Total Variation: Stochastic Group Privacy.

• d and d′ differ in 1 sample→ exp (ϵ)

• d and d′ differ in k samples→ exp (kϵ)

• Sample d ∼ ⊗nP and d′ ∼ ⊗nQ→ exp (nTV (P,Q)ϵ)

• Sample d ∼ ⊗n
i=1Pi and d′ ∼ ⊗n

i=1Qi→ exp (
∑n

i=1 TV (Pi, Qi)ϵ)

Experimental analysis
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1. AdaP-TT outperforms DP-SE.

2. The performance of AdaP-TT has two regimes: a high-privacy
regime (for ϵ < 0.2) and a low privacy regime (for ϵ > 0.2).

Future work
• Close the gap between the lower and upper bounds with a tighter

theoretical analysis.

• Extend the analysis to other DP settings, like (ϵ, δ)-DP and Rényi-DP.

• Extend the analysis to other trust models, namely local DP and shuf-
fle DP.


