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Motivation

Goal: Identify the item having the high-
est averaged return.

Typical assumptions: Parametric
(Bernoulli, Gaussian).

4! Too restrictive !

+ This paper:

Bounded distributions !

Crop-management task:
• item = planting date
• observation = yield Figure 1: DSSAT instances’ density (K = 4).

Best-arm identification (BAI)

K arms: Fi ∈ F cdf of arm i ∈ [K] with mean m(Fi) = EX∼Fi [X].

Set of distributions F with set of means I:
(a) Bounded distributions in [0, B] and I = (0, B),
(b) Single parameter exponential families (SPEF) with sub-exponential tails.

Goal: identify i?(F ) = arg maxi∈[K]m(Fi) with confidence 1− δ ∈ (0, 1).

Algorithm: at time n,
• Sequential test: if the stopping time τδ is reached, then return the candidate

answer ı̂n, else
• Sampling rule: pull arm In and observe Xn ∼ FIn .

Objective: Minimize EF [τδ] for δ-correct algorithms, meaning that

PF [τδ < +∞, ı̂τδ 6= i?(F )] ≤ δ .

Sample complexity lower bound

Garivier and Kaufmann (2016), Agrawal et al. (2020): For all δ-correct algorithm,

∀F ∈ FK , EF [τδ] ≥ T ?(F ) ln(1/(2.4δ)) .

Family of β-algorithms: β ∈ (0, 1) proportion of pulls to the best arm (Russo, 2016).
+ Example: Top Two sampling rule.

The inverse of the β-characteristic time is

T ?β (F )−1 = sup
w∈4K ,wi?(F )=β

min
i 6=i?(F )

inf
u∈I

{
βK−inf(Fi?(F ), u) + wiK+

inf(Fi, u)
}
.

4K simplex, K±inf(F, u) = inf {KL(F,G) | G ∈ F , m(G) ≷ u} for all (F, u) ∈ F×I.

Properties:
• T ?(F ) = minβ∈(0,1) T

?
β (F ) and T ?1/2(F ) ≤ 2T ?(F ).

• T ?β (F ) is achieved for a unique β-optimal allocation wβ when i?(F ) is unique.

δ-correct sequential test

? How to obtain a δ-correct sequential test ?

+ recommend the empirical best arm ı̂n = i?(Fn), whereNn,i =
∑
t∈[n] 1 (It = i)

and Fn,i = 1
Nn,i

∑
t∈[n] δXt1 (It = i).

+ GLR stopping rule: given a calibrated threshold c(n, δ), define

τδ = inf{n ∈ N | min
j 6=ı̂n

Wn(̂ın, j) > c(n, δ)} , (1)

where the empirical transportation cost between arms (i, j) is

Wn(i, j) = inf
u∈I

{
Nn,iK−inf(Fn,i, u) +Nn,jK+

inf(Fn,j , u)
}
.

Top Two sampling rule

Choose a leader Bn ∈ [K]

Choose a challenger Cn 6= Bn

Sample Bn with probability β, else sample Cn

? How to choose the leader ?
+ Thompson Sampling (TS) (Russo, 2016), arg maxi∈[K] θi with θ ∼ Πn−1 where
Πn−1 is a sampler on IK .
+ Empirical Best (EB), ı̂n−1.

? How to choose the challenger ?
+ Re-Sampling (RS) (Russo, 2016), arg maxi∈[K] θi where we sample θ ∼ Πn−1 until
Bn /∈ arg maxi∈[K] θi.
+ Transportation Cost (TC) (Shang et al., 2020) = [SHKMV20], arg minj 6=BnWn−1(Bn, j).
+ Transportation Cost Improved (TCI),

arg min
j 6=Bn

Wn−1(Bn, j) + log(Nn−1,j) .

Bounded instances
Calibrated threshold: c(n, δ) = ln (1/δ) + 2 ln (1 + n/2) + 2 + ln(K − 1).

Computing empirical Kinf : let (Xt,i)t∈[Nn,i] be the samples of arm i, then

Nn,iK+
inf(Fn,i, u) = sup

λ∈[0,1]

∑
t∈[Nn,i]

ln

(
1− λXt,i − u

B − u

)
,

which is computed with a zero-order optimization algorithm (e.g. Brent’s method).

Computing Wn(i, j): minimizing a univariate function on a bounded interval.

? How to design a sampler over (0, B)K ? Riou and Honda (2020)

+ Dirichlet sampler: Πn =×i∈[K]
Πn,i where Πn,i uses the empirical cdf Fn,i

augmented by {0, B}. The sampler Πn,i returns∑
t∈[Nn,i]

wtXt,i +BwNn,i+1 with w ∼ Dir(1Nn,i+2) .

Sample complexity upper bound

Theorem 1. Given (1) with a calibrated threshold, instantiating the Top Two sam-
pling rule with any pair of leader/challenger satisfying some properties yields a
δ-correct algorithm, and for instances F ∈ FK having distinct means it satisfies

lim sup
δ→0

EF [τδ]

log(1/δ)
≤ T ?β (F ) .

Table 1: Leaders and challengers satisfying the sufficient properties for Theorem 1 to hold.

Distributions TS EB RS TC TCI

SPEF Gaussian [SHKMV20] 3 [SHKMV20] [SHKMV20] 3
Bernoulli 3 3 3 3 3
sub-Exp ? 3 ? 3 3

Bounded 3 3 3 3 3

Proof. Convergence time T εβ = inf{T | ∀n ≥ T, ‖Nn/n− wβ‖∞ ≤ ε}. Under (1),

ln (1/δ) ≈δ→0 c(n, δ) ≥ min
j 6=ı̂n

Wn(̂ın, j) ≈n≥T εβ nT
?
β (F )−1 .

Sufficient exploration: mini∈[K]Nn,i ≥
√
n/K for n large enough.

Let ψn,i = P|(n−1)[In = i] and Ψn,i =
∑
t∈[n] ψt,i. Then, (Nn,i − Ψn,i)/

√
n are

sub-Gaussian random variables and the Top Two sampling rule satisfies

ψn,i = βP|(n−1)[Bn = i] + (1− β)
∑
j 6=i

P|(n−1)[Bn = j]P|(n−1)[Cn = i|Bn = j] .

Convergence towards wβ: showing EF [T εβ ] < +∞ for ε small enough
• Leader, P|n[Bn+1 6= i?] = O(n−α) for n large enough, with α > 0.
• Challenger, for n large enough and all i 6= i?, Ψn,i/n ≥ wβi + ε implies that
P|n[Cn+1 = i|Bn+1 = i?] = O(n−α). �

Experiments

Figure 2: Empirical stopping time for δ = 0.01 on (a) DSSAT instances and (b) random and distinct
Bernoulli instances (K = 10) with µ1 = 0.6 and µi ∼ U([0.2, 0.5]) for i 6= 1. Lower bound is
T ?(F ) ln(1/δ). Top Two algorithms with β = 1/2.

Conclusion
1. Generic and modular analysis of Top Two algorithms.

2. Proving asymptotic β-optimality of Top Two algorithms as in Table 1.

3. Competitive performance on a real-world non-parametric task.


