Choosing Answers in ε -Best-Answer Identification for Linear Bandits

Marc Jourdan and Rémy Degenne

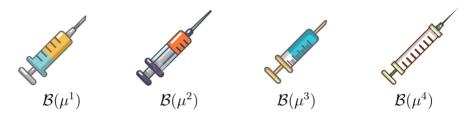
November 19, 2021

Section 1

Motivation

Clinical trials (phase II/III)

Treatments = Arms = Answers



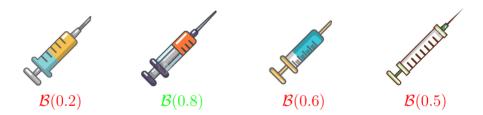
For the *t*-th patient,

- administer a treatment a_t and
- observe a response $X_t^{a_t} \in \{0,1\}$ such that $\mathbb{P}_{\mu}[X_t^{a_t} = 1] = \mu^{a_t}$.

Goal: identify the best treatment (BAI), $a^*(\mu) = \arg \max_{a \in [4]} \mu^a$.

BAI can be "easy"

"Easy" instance



• Few samples to identify the red treatment as the best one.

or too "hard" and not even required

"Hard" instance

- Numerous samples to distinguish between the red and blue treatments.
- **Question**: Do we really need to identify the red treatment or would we also be satified with the blue one ?

Identifying a relatively good treatment

Goal: identify one treatment which is ε -close to the best treatment (ε -BAI).

• Few samples to identify the red or the blue treatments as relatively good treatments.

Question: At the end of the clinical trial, should we recommend the red treatment (BAI) or the blue one ?

Identifying a relatively good treatment

Goal: identify one treatment which is ε -close to the best treatment (ε -BAI).

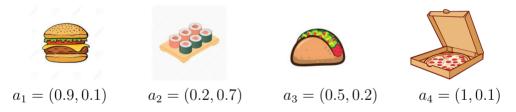
• Few samples to identify the red or the blue treatments as relatively good treatments.

Question: At the end of the clinical trial, should we recommend the red treatment (BAI) or the blue one ?

Choosing a restaurant for a special occasion

Unknown partner's taste $\mu = (quantity, visual) = (0.6, 0.5).$

"Daily"/"Cheap" meals = Arms



For the *t*-th dinner at home,

- choose a "daily" meal a_t and
- observe a response $X_t^{a_t} \sim \mathcal{N}(\mu^{a_t}, 1)$ where $\mu^{a_t} = \langle \mu, a_t \rangle$.

Choosing a restaurant for a special occasion

"Fancy"/"Expensive" meals = Answers

Goal: identify one "fancy" meal which is ε -close to the favorite one of your partner whose taste is $\mu = (0.6, 0.5)$.

Question: For the special occasion, should we go eat bibimbap (BAI) or snails ?

Choosing a restaurant for a special occasion

"Fancy"/"Expensive" meals = Answers

Goal: identify one "fancy" meal which is ε -close to the favorite one of your partner whose taste is $\mu = (0.6, 0.5)$.

 ${\bf Question:}\,$ For the special occasion, should we go eat bibimbap (BAI) or snails ?

Section 2

Problem Statement

Transductive bandits:

- arms, $\mathcal{K} = \{a_k\}_{k \in [K]} \subseteq \mathbb{R}^d$ where $\mathsf{Span}(\mathcal{K}) = \mathbb{R}^d$,
- answers, $\mathcal{Z} = \{z_i\}_{i \in [Z]} \subseteq \mathbb{R}^d$.

Linear Gaussian bandits:

- unknown mean parameter, $\mu \in \mathcal{M} \subseteq \mathbb{R}^d$,
- Gaussian distributions, $\nu^a = \mathcal{N}(\langle \mu, a \rangle, 1)$ for all $a \in \mathcal{K}$.

At time t, pull $a_t \in \mathcal{K}$ and observe $X_t^{a_t} \sim \nu^{a_t}$.

ε -best-answer identification (ε -BAI)

Goal: Identify one ε -optimal answer, $z \in \mathcal{Z}_{\varepsilon}(\mu)$ with $\varepsilon \geq 0$.

Greedy answer, $z^*(\mu) = \arg \max_{z \in \mathcal{Z}} \langle \mu, z \rangle$. \rightarrow In BAI ($\varepsilon = 0$), $z^*(\mu)$ is the unique correct answer.

 ε -optimality:

• additive,
$$\mathcal{Z}^{\mathrm{add}}_{\varepsilon}(\mu) = \{ z \in \mathcal{Z} : \langle \mu, z \rangle \geq \langle \mu, z^*(\mu) \rangle - \varepsilon \}$$
,

• multiplicative,
$$\mathcal{Z}_{\varepsilon}^{\mathrm{mul}}(\mu) = \{ z \in \mathcal{Z} : \langle \mu, z \rangle \ge (1 - \varepsilon) \langle \mu, z^*(\mu) \rangle \}.$$

Questions:

- How to choose among the ε -optimal answers ?
- Can we do better than the greedy answer ?

ε -best-answer identification (ε -BAI)

Goal: Identify one ε -optimal answer, $z \in \mathcal{Z}_{\varepsilon}(\mu)$ with $\varepsilon \geq 0$.

Greedy answer, $z^*(\mu) = \arg \max_{z \in \mathcal{Z}} \langle \mu, z \rangle$. \rightarrow In BAI ($\varepsilon = 0$), $z^*(\mu)$ is the unique correct answer.

 ε -optimality:

• additive,
$$\mathcal{Z}^{\mathrm{add}}_{\varepsilon}(\mu) = \{z \in \mathcal{Z} : \langle \mu, z \rangle \geq \langle \mu, z^*(\mu) \rangle - \varepsilon \}$$
,

• multiplicative,
$$\mathcal{Z}_{\varepsilon}^{\mathrm{mul}}(\mu) = \{ z \in \mathcal{Z} : \langle \mu, z \rangle \ge (1 - \varepsilon) \langle \mu, z^*(\mu) \rangle \}.$$

Questions:

- How to choose among the ε -optimal answers ?
- Can we do better than the greedy answer ?

$(\varepsilon,\delta)\text{-}\mathsf{PAC}$ identification strategy

Fixed-confidence setting, $\delta \in (0,1)$

Three rules:

- sampling rule, $a_t \in \mathcal{K}$,
- recommendation rule, $z_t \in \mathcal{Z}$,
- stopping rule, τ_{δ} .

Requirement: (ε, δ) -PAC, $\mathbb{P}_{\mu}[z_{\tau_{\delta}} \notin \mathcal{Z}_{\varepsilon}(\mu)] \leq \delta$ and $\mathbb{P}_{\mu}[\tau_{\delta} < +\infty] = 1$.

Objective: Minimize $\mathbb{E}_{\mu}[\tau_{\delta}]$.

$(\varepsilon,\delta)\text{-}\mathsf{PAC}$ identification strategy

Fixed-confidence setting, $\delta \in (0,1)$

Three rules:

- sampling rule, $a_t \in \mathcal{K}$,
- recommendation rule, $z_t \in \mathcal{Z}$,
- stopping rule, τ_{δ} .

Requirement: (ε, δ) -PAC, $\mathbb{P}_{\mu}[z_{\tau_{\delta}} \notin \mathcal{Z}_{\varepsilon}(\mu)] \leq \delta$ and $\mathbb{P}_{\mu}[\tau_{\delta} < +\infty] = 1$.

Objective: Minimize $\mathbb{E}_{\mu}[\tau_{\delta}]$.

- **(**) Analyze (ε, δ) -PAC BAI for transductive linear bandits.
- On't choose greedily: aim at identifying the *furthest* answer !
- L ε BAI (Linear ε -BAI), asymptotically optimal and empirically competitive.

Related work

 ε -BAI:

- Degenne and Koolen (2019), multiple-correct answer setting with fixed-confidence, Sticky Track-and-Stop (TaS),
- Garivier and Kaufmann (2021), (ε, δ) -PAC BAI in MAB for additive ε -optimality, ε -TaS,
- Kocák and Garivier (2021), (ε , δ)-PAC BAI in additive spectral bandits, SpectralTaS.

Fixed-confidence BAI in linear bandits (to name a few):

- Soare et al. (2014), \mathcal{XY} -Adaptive,
- Xu et al. (2018), LinGapE,
- Fiez et al. (2019), RAGE,
- Jedra and Proutière (2020), Lazy TaS,
- Degenne et al. (2020), LinGame

 ε -BAI:

- Degenne and Koolen (2019), multiple-correct answer setting with fixed-confidence, Sticky Track-and-Stop (TaS),
- Garivier and Kaufmann (2021), (ε , δ)-PAC BAI in MAB for additive ε -optimality, ε -TaS,
- Kocák and Garivier (2021), (ε , δ)-PAC BAI in additive spectral bandits, SpectralTaS.

Fixed-confidence BAI in linear bandits (to name a few):

- Soare et al. (2014), $\mathcal{X}\mathcal{Y}$ -Adaptive,
- Xu et al. (2018), LinGapE,
- Fiez et al. (2019), RAGE,
- Jedra and Proutière (2020), Lazy TaS,
- Degenne et al. (2020), LinGame.

Section 3

Comparing ε -Optimal Answers

Notations:

- design matrix $V_w = \sum_{a \in \mathcal{K}} w^a a a^\intercal \in \mathbb{R}^{d \times d}$ for any $w \in (\mathbb{R}^+)^K$,
- norm $||x||_V = \sqrt{x^{\mathsf{T}}Vx}$ for $x \in \mathbb{R}^d$,
- simplex of dimension K-1 is denoted by \triangle_K .

Alternative to $z \in \mathcal{Z}$: closure of the set of parameters for which z is not an ε -optimal answer, $\neg_{\varepsilon} z = \overline{\{\lambda \in \mathcal{M} : z \notin \mathcal{Z}_{\varepsilon}(\lambda)\}}$.

Identifying z as an ε -optimal answer is equivalent to rejecting the hypothesis that μ belongs to the alternative to z.

 $\forall z \in \mathcal{Z}, \quad \mathcal{H}_{0,z} : (\mu \in \neg_{\varepsilon} z) \quad \text{against} \quad \mathcal{H}_{1,z} : (z \in \mathcal{Z}_{\varepsilon}(\mu))$

Notations:

• design matrix
$$V_w = \sum_{a \in \mathcal{K}} w^a a a^\intercal \in \mathbb{R}^{d \times d}$$
 for any $w \in (\mathbb{R}^+)^K$,

• norm
$$\|x\|_V = \sqrt{x^\intercal V x}$$
 for $x \in \mathbb{R}^d$,

• simplex of dimension K-1 is denoted by \triangle_K .

Alternative to $z \in \mathcal{Z}$: closure of the set of parameters for which z is not an ε -optimal answer, $\neg_{\varepsilon} z = \overline{\{\lambda \in \mathcal{M} : z \notin \mathcal{Z}_{\varepsilon}(\lambda)\}}$.

Identifying z as an ε -optimal answer is equivalent to rejecting the hypothesis that μ belongs to the alternative to z.

$$\forall z \in \mathcal{Z}, \quad \mathcal{H}_{0,z} : (\mu \in \neg_{\varepsilon} z) \quad \text{against} \quad \mathcal{H}_{1,z} : (z \in \mathcal{Z}_{\varepsilon}(\mu))$$

Asymptotic lower bound

Theorem (Degenne and Koolen (2019))

For all (ε, δ) -PAC strategy, for all $\mu \in \mathcal{M}$,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\ln(1/\delta)} \ge T_{\varepsilon}(\mu)$$

where the inverse of the characteristic time is

$$\Gamma_{\varepsilon}(\mu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}(\mu)} \max_{w \in \Delta_K} \inf_{\lambda \in \neg_{\varepsilon} z} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2$$
 (1)

Asymptotic optimality: for all $\mu \in \mathcal{M}$,

7

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\ln(1/\delta)} \le T_{\varepsilon}(\mu)$$

Asymptotic lower bound

Theorem (Degenne and Koolen (2019))

For all (ε, δ) -PAC strategy, for all $\mu \in \mathcal{M}$,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\ln(1/\delta)} \ge T_{\varepsilon}(\mu)$$

where the inverse of the characteristic time is

$$\Gamma_{\varepsilon}(\mu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}(\mu)} \max_{w \in \Delta_K} \inf_{\lambda \in \neg_{\varepsilon} z} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2$$
(1)

Asymptotic optimality: for all $\mu \in \mathcal{M}$,

7

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\ln(1/\delta)} \le T_{\varepsilon}(\mu)$$

$$T_{\varepsilon}(\mu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}(\mu)} \max_{w \in \Delta_K} \inf_{\lambda \in \neg_{\varepsilon} z} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2$$

The ε -optimal answer for which its alternative is the easiest to differentiate from thanks to an optimal allocation over arms $w_F(\mu) \in \Delta_K$.

$$(z_F(\mu), w_F(\mu)) \stackrel{\text{def}}{=} \arg\max_{(z,w)\in\mathcal{Z}_{\varepsilon}(\mu)\times\bigtriangleup_K} \inf_{\lambda\in\neg_{\varepsilon}z} \frac{1}{2} \|\mu-\lambda\|_{V_w}^2 \tag{2}$$

Assumption: the furthest answer for μ is unique, $|z_F(\mu)| = 1$.

Don't choose the greedy answer: aim at identifying the *furthest* answer !

$$T_{\varepsilon}(\mu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}(\mu)} \max_{w \in \Delta_K} \inf_{\lambda \in \neg_{\varepsilon} z} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2$$

The ε -optimal answer for which its alternative is the easiest to differentiate from thanks to an optimal allocation over arms $w_F(\mu) \in \Delta_K$.

$$(z_F(\mu), w_F(\mu)) \stackrel{\mathsf{def}}{=} \arg\max_{(z,w)\in\mathcal{Z}_\varepsilon(\mu)\times\triangle_K} \inf_{\lambda\in\neg_\varepsilon z} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2 \tag{2}$$

Assumption: the furthest answer for μ is unique, $|z_F(\mu)| = 1$.

Don't choose the greedy answer: aim at identifying the furthest answer !

Numerical simulations

• Multiplicative ε -optimality.

•
$$d = 2$$
, $\mathcal{M} = \mathbb{R}^2$, $\mathcal{Z} = \mathcal{K}$ ($K = 4$) and $\mu = (1, 0)$.

• Given ε , generate 25000 random instances: $z_1 = \mu$, $z_2 \in \mathcal{Z}_{\varepsilon}(\mu)$ and $(z_3, z_4) \in (\mathcal{Z} \setminus \mathcal{Z}_{\varepsilon}(\mu))^2$.

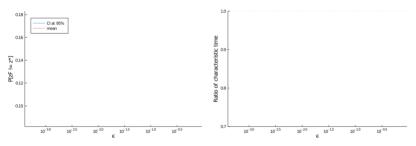


Figure: (a) Proportion of draws where $z_F(\mu) \neq z^*(\mu)$. (b) Median of the ratio between $T_{\varepsilon}^{\text{mul}}(\mu)$ and the value at $z^*(\mu)$ (when $z_F(\mu) \neq z^*(\mu)$).

Numerical simulations

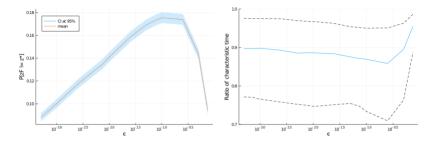


Figure: (a) Proportion of draws where $z_F(\mu) \neq z^*(\mu)$. (b) Median of the ratio between $T_{\varepsilon}^{\text{mul}}(\mu)$ and the value at $z^*(\mu)$ (when $z_F(\mu) \neq z^*(\mu)$).

- The furthest answer is often different from the greedy answer ($\approx 14\%$).
- The ratio of their characteristic time is on average 0.9.

Section 4

$L \varepsilon BAI$

L.

Notations and structure of $L \varepsilon BAI$

• counts of pulled arms, $N_{t-1}^a = \sum_{s=1}^{t-1} \mathbf{1}_{\{a_s=a\}}$, • OLS/ML estimator, $\mu_{t-1} = V_{N_{t-1}}^{-1} \sum_{s=1}^{t-1} X_s^{a_s} a_s$.

After pulling each arm once $(n_0=K)$, at each round $t\geq n_0+1$,

- if the stopping condition for the candidate answer z_t is met, return z_t ;
- else, the sampling rule returns an arm a_t to pull and the statistics are updated based on this new observation.

Assumption: set of parameter is bounded by M.

- counts of pulled arms, $N^a_{t-1} = \sum_{s=1}^{t-1} \mathbf{1}_{\{a_s=a\}}$,
- OLS/ML estimator, $\mu_{t-1} = V_{N_{t-1}}^{-1} \sum_{s=1}^{t-1} X_s^{a_s} a_s$.

After pulling each arm once $(n_0 = K)$, at each round $t \ge n_0 + 1$,

- if the stopping condition for the candidate answer z_t is met, return z_t ;
- else, the sampling rule returns an arm a_t to pull and the statistics are updated based on this new observation.

Assumption: set of parameter is bounded by M.

Stopping rule

Given $z_t \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})$, stop when the GLR exceeds $\beta(t-1,\delta)$ $\inf_{\lambda \in \neg_{\varepsilon} z_t} \|\mu_{t-1} - \lambda\|_{V_{N_{t-1}}}^2 > 2\beta(t-1,\delta)$ (3)

Lemma

Given any sampling and recommendation rules such that $z_t \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})$, then using (3) with the threshold

$$\beta(t,\delta) = 2K \ln\left(4 + \ln\left(\frac{t}{K}\right)\right) + K \mathcal{C}^{g_G}\left(\frac{\ln\left(\frac{1}{\delta}\right)}{K}\right)$$
(4)

ensures that $\mathbb{P}_{\mu}[\tau_{\delta} < +\infty \land \hat{z} \notin \mathcal{Z}_{\varepsilon}(\mu)] \leq \delta$. $\mathcal{C}^{g_{G}}(x) \approx x + \ln(x)$ is defined in Kaufmann and Koolen (2018).

Stopping rule

Given $z_t \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})$, stop when the GLR exceeds $\beta(t-1,\delta)$ $\inf_{\lambda \in \neg_{\varepsilon} z_t} \|\mu_{t-1} - \lambda\|_{V_{N_{t-1}}}^2 > 2\beta(t-1,\delta)$ (3)

Lemma

Given any sampling and recommendation rules such that $z_t \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})$, then using (3) with the threshold

$$\beta(t,\delta) = 2K \ln\left(4 + \ln\left(\frac{t}{K}\right)\right) + K \mathcal{C}^{g_G}\left(\frac{\ln\left(\frac{1}{\delta}\right)}{K}\right)$$
(4)

ensures that $\mathbb{P}_{\mu}[\tau_{\delta} < +\infty \land \hat{z} \notin \mathcal{Z}_{\varepsilon}(\mu)] \leq \delta$. $\mathcal{C}^{g_{G}}(x) \approx x + \ln(x)$ is defined in Kaufmann and Koolen (2018).

Question: How to choose $z_t \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})$ to stop as early as possible ?

Natural candidates:

- greedy answer, $z_t = z^*(\mu_{t-1})$, sample inefficient,
- furthest answer, $z_t = z_F(\mu_{t-1})$, computationally inefficient.

The $\varepsilon\text{-optimal}$ answer with highest GLR is the instantaneous furthest answer, $z_t=z_F(\mu_{t-1},N_{t-1})$ where

$$z_F(\mu_{t-1}, N_{t-1}) \stackrel{\text{def}}{=} \underset{z \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})}{\arg \max} \inf_{\lambda \in \neg_{\varepsilon} z_t} \|\mu_{t-1} - \lambda\|_{V_{N_{t-1}}}^2$$

Question: How to choose $z_t \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})$ to stop as early as possible ?

Natural candidates:

- greedy answer, $z_t = z^*(\mu_{t-1})$, sample inefficient,
- furthest answer, $z_t = z_F(\mu_{t-1})$, computationally inefficient.

The $\varepsilon\text{-optimal}$ answer with highest GLR is the instantaneous furthest answer, $z_t=z_F(\mu_{t-1},N_{t-1})$ where

$$z_F(\mu_{t-1}, N_{t-1}) \stackrel{\text{def}}{=} \underset{z \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})}{\arg \max} \inf_{\lambda \in \neg_{\varepsilon} z_t} \|\mu_{t-1} - \lambda\|_{V_{N_{t-1}}}^2$$

Maxmin saddle-point algorithm:

- the agent plays $(\widetilde{z}_t, w_t^{\mathcal{L}^{\mathcal{K}}}) \in \mathcal{Z}_{\varepsilon}(\mu_{t-1}) \times \triangle_K$ thanks to a \mathcal{Z} -oracle and a learner on \triangle_K (e.g. AdaHedge), then
- the nature plays the closest alternative, $\lambda_t \in \arg \min_{\lambda \in \neg_{\varepsilon} \widetilde{z}_t} \|\mu_{t-1} - \lambda\|_{V_{w_t}}^2$ where $w_t = \frac{1}{tK} \mathbf{1}_K + (1 - \frac{1}{t}) w_t^{\mathcal{L}^{\mathcal{K}}}$ (logarithmic forced exploration).

Algorithmic ingredients:

- tracking, $a_t \in \operatorname{arg\,min}_{a \in \mathcal{K}} N^a_{t-1} W^a_t$ where $W_t = \sum_{s=n_0+1}^t w_s$,
- optimistic gains, $(U_t^a)_{a\in\mathcal{K}}$, used to
- update the learner with $g_t(w) = (1 \frac{1}{t}) \langle w, U_t \rangle$.

Maxmin saddle-point algorithm:

- the agent plays $(\widetilde{z}_t, w_t^{\mathcal{L}^{\mathcal{K}}}) \in \mathcal{Z}_{\varepsilon}(\mu_{t-1}) \times \triangle_K$ thanks to a \mathcal{Z} -oracle and a learner on \triangle_K (e.g. AdaHedge), then
- the nature plays the closest alternative, $\lambda_t \in \arg \min_{\lambda \in \neg_{\varepsilon} \widetilde{z}_t} \|\mu_{t-1} - \lambda\|_{V_{w_t}}^2$ where $w_t = \frac{1}{tK} \mathbf{1}_K + (1 - \frac{1}{t}) w_t^{\mathcal{L}^{\mathcal{K}}}$ (logarithmic forced exploration).

Algorithmic ingredients:

- tracking, $a_t \in \arg\min_{a \in \mathcal{K}} N^a_{t-1} W^a_t$ where $W_t = \sum_{s=n_0+1}^t w_s$,
- optimistic gains, $(U^a_t)_{a\in\mathcal{K}}$, used to
- update the learner with $g_t(w) = (1 \frac{1}{t}) \langle w, U_t \rangle$.

Theorem

Let $\mathcal{L}^{\mathcal{K}}$ with sub-linear regret and $\mathcal{L}^{\mathcal{Z}}$ such that $\tilde{z}_s \in z_F(\mu_{s-1})$ and Assumption 1 holds true. When recommending the instantaneous furthest answer $z_t = z_F(\mu_{t-1}, N_{t-1})$ and stopping according to (3) with threshold $\beta(t, \delta)$ as in (4) for the exploration bonus $f(t) = 2\beta(t, t^{1/3})$, $\mathcal{L} \in BAI$ yields a (ε, δ) -PAC algorithm and, for all $\mu \in \mathcal{M}$ such that $|z_F(\mu)| = 1$,

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu} \left[\tau_{\delta} \right]}{\ln \left(\frac{1}{\delta} \right)} \le T_{\varepsilon}(\mu)$$

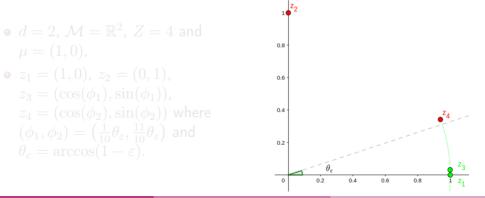
Assumption 1 requires the \mathcal{Z} -oracle to be *not too good* with respect to a gain not optimized by \mathcal{Z} -oracle.

Section 5

Experiments

Hard instance

- multiplicative ε -optimality,
- $(\varepsilon,\delta)=(0.05,0.1)$,
- 5000 runs (std of means with sub-samples of 100 runs).



Hard instance

- multiplicative ε -optimality,
- $(\varepsilon,\delta)=(0.05,0.1)$,
- 5000 runs (std of means with sub-samples of 100 runs).

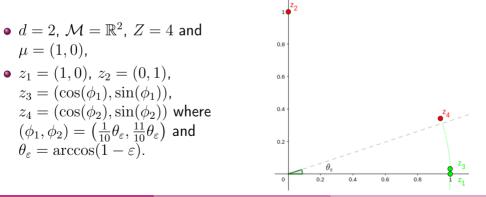


Table: Empirical stopping time $(\pm \sigma)$ on the hard instance for different combinations of sampling rule and recommendation rule with $\mathcal{K} = \{e_1, e_2\}$.

	$z^*(\mu_{t-1})$	$z_F(\mu_{t-1})$	$z_F(\mu_{t-1}, N_{t-1})$
LεBAI			
ε -TaS			
Fixed			
Uniform			

Table: Empirical stopping time $(\pm \sigma)$ on the hard instance for different combinations of sampling rule and recommendation rule with $\mathcal{K} = \{e_1, e_2\}$.

	$z^*(\mu_{t-1})$	$z_F(\mu_{t-1})$	$z_F(\mu_{t-1}, N_{t-1})$
LεBAI		$244 \ (\pm 14)$	$242 \ (\pm 13)$
ε -TaS		$235 (\pm 13)$	$235 (\pm 13)$
Fixed		$238 (\pm 12)$	$238 (\pm 12)$
Uniform		$284 \ (\pm 16)$	$284 \ (\pm 16)$

• Furthest and instantaneous furthest have almost identical performance.

Heuristic: $\widetilde{z}_t = z_t = z_F(\mu_{t-1}, N_{t-1}).$

Table: Empirical stopping time $(\pm \sigma)$ on the hard instance for different combinations of sampling rule and recommendation rule with $\mathcal{K} = \{e_1, e_2\}$.

	$z^*(\mu_{t-1})$	$z_F(\mu_{t-1})$	$z_F(\mu_{t-1}, N_{t-1})$
LεBAI	$264 (\pm 11)$		$242 \ (\pm 13)$
ε -TaS	$252 (\pm 13)$		$235 (\pm 13)$
Fixed	$256 (\pm 12)$		$238 (\pm 12)$
Uniform	$309 (\pm 16)$		$284 \ (\pm 16)$

- Greedy is sample-inefficient.
- L ε BAI has similar performance with ε -TaS and Fixed, and outperforms Uniform.

BAI algorithms

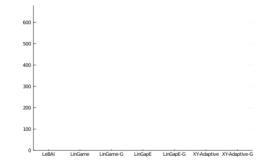


Figure: Empirical stopping time on the hard instance ($\mathcal{K} = \mathcal{Z}$).

 $\underline{\wedge}$ BAI algorithms are modified to use the same stopping rule.

BAI algorithms

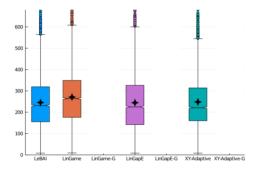


Figure: Empirical stopping time on the hard instance ($\mathcal{K} = \mathcal{Z}$).

 $L\varepsilon BAI$ performs

- slightly better than LinGame and
- on par with LinGapE and \mathcal{XY} -Adaptive.

BAI algorithms

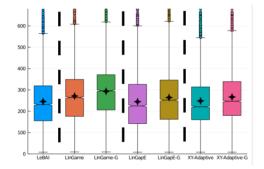


Figure: Empirical stopping time on the hard instance ($\mathcal{K} = \mathcal{Z}$).

• Sample-efficient modification of BAI algorithms for ε -BAI: use the instantaneous furthest answer instead of the greedy answer.

L

ε-BAI for Linear Bandits

Contributions:

- Don't choose greedily: aim at identifying the *furthest* answer !
- **2** L ε BAI, asymptotically optimal and empirically competitive.

Open questions/problems:

- Performance of ε -BAI algorithms on BAI tasks.
- Efficient computation of the closest alternative when Z is large.
- Finite-time lower bound for multiple-correct answer.

Contributions:

- Don't choose greedily: aim at identifying the *furthest* answer !
- **2** L ε BAI, asymptotically optimal and empirically competitive.

Open questions/problems:

- Performance of ε -BAI algorithms on BAI tasks.
- Efficient computation of the closest alternative when Z is large.
- Finite-time lower bound for multiple-correct answer.

References

- Degenne, R. and Koolen, W. M. (2019). Pure exploration with multiple correct answers. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 14564–14573.
- Degenne, R., Ménard, P., Shang, X., and Valko, M. (2020). Gamification of pure exploration for linear bandits. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 2432–2442. PMLR.
- Fiez, T., Jain, L., Jamieson, K. G., and Ratliff, L. J. (2019). Sequential experimental design for transductive linear bandits. In Wallach, H. M., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 10666-10676.
- Garivier, A. and Kaufmann, E. (2021). Nonasymptotic sequential tests for overlapping hypotheses applied to near-optimal arm identification in bandit models. *Sequential Analysis*, 40(1):61–96.
- Jedra, Y. and Proutière, A. (2020). Optimal best-arm identification in linear bandits. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.
- Kaufmann, E. and Koolen, W. (2018). Mixture martingales revisited with applications to sequential tests and confidence intervals. arXiv preprint arXiv:1811.11419.
- Kocák, T. and Garivier, A. (2021). Epsilon best arm identification in spectral bandits. In Zhou, Z.-H., editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 2636–2642. International Joint Conferences on Artificial Intelligence Organization. Main Track.
- Soare, M., Lazaric, A., and Munos, R. (2014). Best-arm identification in linear bandits. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 828–836.
- Xu, L., Honda, J., and Sugiyama, M. (2018). A fully adaptive algorithm for pure exploration in linear bandits. In Storkey, A. and Perez-Cruz, F., editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 843–851. PMLR.

Questions ?

Appendix

L.

Lemma

When $\overline{\mathcal{M}} = \mathbb{R}^d$ and V_w^{\dagger} is the Moore-Penrose pseudo-inverse of V_w ,

$$2T_{\varepsilon}^{\text{add}}(\mu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}^{\text{add}}(\mu)} \max_{w \in \Delta_{K}} \min_{x \in \mathcal{Z} \setminus \{z\}} \frac{\left(\varepsilon + \langle \mu, z - x \rangle\right)^{2}}{\|z - x\|_{V_{w}^{\dagger}}^{2}}$$
$$2T_{\varepsilon}^{\text{mul}}(\mu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}^{\text{mul}}(\mu)} \max_{w \in \Delta_{K}} \min_{x \in \mathcal{Z} \setminus \{z\}} \frac{\langle \mu, z - (1 - \varepsilon)x \rangle^{2}}{\|z - (1 - \varepsilon)x\|_{V_{w}^{\dagger}}^{2}}$$

$$T_{\varepsilon}^{\mathrm{mul}}(\mu) = \min_{z \in \mathcal{Z}_{\varepsilon}^{\mathrm{mul}}(\mu)} T_0(\mu, \mathcal{Z}_{\varepsilon}^z)$$

where $\mathcal{Z}_{\varepsilon}^{z} \stackrel{\text{def}}{=} \{z\} \cup \{(1-\varepsilon)x : x \in \mathcal{Z} \setminus \{z\}\}$

The ε -optimal answer for which its alternative is the easiest to differentiate from thanks to an optimal allocation over arms $w_F(\mu) \in \Delta_K$.

$$(z_F(\mu), w_F(\mu)) \stackrel{\mathsf{def}}{=} \arg\max_{(z,w)\in\mathcal{Z}_{\varepsilon}(\mu)\times\Delta_K} \inf_{\lambda\in\neg_{\varepsilon}z} \frac{1}{2} \|\mu-\lambda\|_{V_w}^2 \tag{5}$$

Assumption: the furthest answer for μ is unique, $|z_F(\mu)| = 1$.

Role in asymptotic optimality:

- $z_F(\mu)$ has to be identified, e.g. $T_{\varepsilon}^{\text{mul}}(\mu) = T_0\left(\mu, \mathcal{Z}_{\varepsilon}^{z_F(\mu)}\right)$ where $\mathcal{Z}_{\varepsilon}^z = \{z\} \cup \{(1-\varepsilon)x : x \in \mathcal{Z} \setminus \{z\}\}$
- Analysis involves a geometric quantity linked to $z_F(\mu)$

Algorithm 1: L*c*BAI

Input: History \mathcal{F}_t , \mathcal{Z} -oracle $\mathcal{L}^{\mathcal{Z}}$ and learner $\mathcal{L}^{\mathcal{K}}$. **Output:** Candidate ε -optimal answer \hat{z} . 1 Pull once each arm $a \in \mathcal{K}$: **2** for $t = n_0 + 1$ do Get $z_t = \text{RECO}$: 3 If STOP(z_t) then return z_t ; 4 $\mathsf{Get}\left(\widetilde{z}_t, w_t^{\mathcal{L}^{\mathcal{K}}}
ight)$ from $\mathcal{L}^{\mathcal{Z}} imes \mathcal{L}^{\mathcal{K}}$; 5 Let $w_t = \frac{1}{4K} \mathbf{1}_K + (1 - \frac{1}{4}) w_t^{\mathcal{L}^{\mathcal{K}}}$ and update $W_t = W_{t-1} + w_t$; 6 Closest alternative: $\lambda_t \in \arg \min_{\lambda \in \neg_z \widetilde{z}_t} \|\mu_{t-1} - \lambda\|_V^2$; 7 Optimistic gains: $\forall a \in \mathcal{K}, U_t^a = \left(\|\mu_{t-1} - \lambda_t\|_{aa^{\mathsf{T}}} + \sqrt{c_{t-1}^a} \right)^2$; 8 Feed $\mathcal{L}^{\mathcal{K}}$ with gain $q_t(w) = (1 - \frac{1}{t}) \langle w, U_t \rangle$; q Pull $a_t \in \arg\min_{a \in K} N^a_{t-1} - W^a_t$, observe $X^{a_t}_t$: 10 11 end

where
$$c_{t-1}^{a} = \min\left\{f\left(s^{2}\right)\|a\|_{V_{N_{s}}^{-1}}^{2}, 4M^{2}L_{\mathcal{K}}^{2}\right\}$$
, $L_{\mathcal{K}} = \max_{a \in \mathcal{K}}\|a\|_{2}$ and $f(t) = 2\beta\left(t, t^{1/3}\right)$.

Upper bound

Theorem

Let $\mathcal{L}^{\mathcal{K}}$ with sub-linear regret and $\mathcal{L}^{\mathcal{Z}}$ such that $\tilde{z}_s \in z_F(\mu_{s-1})$ and Assumption 1 holds true. When recommending the instantaneous furthest answer $z_t = z_F(\mu_{t-1}, N_{t-1})$ and stopping according to (3) with threshold $\beta(t, \delta)$ as in (4) for the exploration bonus $f(t) = 2\beta(t, t^{1/3})$, $\mathcal{L} \in \mathcal{B} \mathcal{A} \mathcal{I}$ yields a (ε, δ) -PAC and, for all $\mu \in \mathcal{M}$ such that $|z_F(\mu)| = 1$,

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu} \left[\tau_{\delta} \right]}{\ln \left(\frac{1}{\delta} \right)} \le T_{\varepsilon}(\mu)$$

Assumption

L

The Z-oracle $\mathcal{L}^{\mathbb{Z}}$ with $\widetilde{z}_s \in z_F(\mu_{s-1})$ satisfies that there exist $(\alpha_0, C_0) \in [0, 1) \times \mathbb{R}_+$ such that almost surely, for all $t > n_0$, $\max_{z \in \mathbb{Z}} \sum_{s=n_0+1}^t \inf_{\lambda \in \neg_{\varepsilon} z} \|\mu_{s-1} - \lambda\|_{Vw_s}^2 - \sum_{s=n_0+1}^t \inf_{\lambda \in \neg_{\varepsilon} \widetilde{z}_s} \|\mu_{s-1} - \lambda\|_{Vw_s}^2 \ge -C_0 t^{\alpha_0}$.

Proof scheme

$$\mathcal{E}_t = \left\{ \forall s \le t : \|\mu_s - \mu\|_{V_{N_s}}^2 \le f(t) \right\}$$
(6)

Under \mathcal{E}_t , if the algorithm does not stop at time t + 1, the stopping-recommendation pair satisfies

$$2\beta(t,\delta) \ge \max_{z\in\mathcal{Z}} \inf_{\lambda\in\neg_{\varepsilon}z} \|\mu - \lambda\|_{V_{N_t}}^2 - o\left(t + \ln\left(\frac{1}{\delta}\right)\right)$$

while the (anytime) sampling rule verifies

$$\max_{z \in \mathcal{Z}} \inf_{\lambda \in \neg_{\varepsilon} z} \|\mu - \lambda\|_{V_{N_t}}^2 \ge \sum_{s=n_0+1}^t g_s \left(w_s^{\mathcal{L}^{\mathcal{K}}} \right) - o\left(t\right) \ge 2t T_{\varepsilon}(\mu)^{-1} - o\left(t\right)$$

Using $\beta(t, \delta) = \ln\left(\frac{1}{\delta}\right) + o\left(t + \ln\left(\frac{1}{\delta}\right)\right)$ (and other Lemmas) yields

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu} \left[\tau_{\delta} \right]}{\ln \left(1/\delta \right)} \le T_{\varepsilon}(\mu)$$

Key challenge in multiple correct answers

Difference:

- BAI: $\mu \in \neg_0 z$ for all $z \neq z^*(\mu)$, hence $\inf_{\lambda \in \neg_0 z} \|\mu \lambda\|_w^2 = 0$ for all $w \in \mathbb{R}^K_+$.
- ε-BAI: μ ∈ ¬_εz for all z ∉ Z_ε(μ). Need to control those strictly positive terms for ε-optimal answers that are different from the (instantaneous) furthest answer, i.e. for all z ∈ Z_ε(μ) \ {z_F(μ)}.

Consequences:

- Assumption 1
- Forced exploration
- Requirement that $(z_t, \widetilde{z}_t) = (z_F(\mu_{t-1}, N_{t-1}), z_F(\mu_{t-1}))$

Additive furthest answer

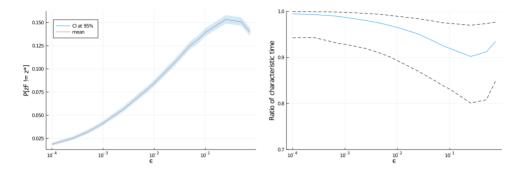


Figure: Influence of ε on (a) the proportion of draws where $z_F(\mu) \neq z^*(\mu)$, (b) the median (and first/third quartile), when $z_F(\mu) \neq z^*(\mu)$, of the ratio between $T_{\varepsilon}^{\text{add}}(\mu)$ and the value at $z^*(\mu)$, i.e. $\min_{w \in \Delta_K} \sup_{\lambda \in \neg_{\varepsilon}^{\text{add}} z^*(\mu)} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2$.

Table: Average number of pulls per arm and empirical stopping time $(\pm \sigma)$ on the hard instance $(\mathcal{K} = \mathcal{Z})$.

	a_1	a_2	a_3	a_4	Total
LεBAI	71	155	17	3	$246 (\pm 13)$
LinGame	74	153	36	8	$271 (\pm 12)$
DKM	111	141	110	110	$472 (\pm 22)$
LinGapE	44	198	1	1	$245 (\pm 16)$
$\mathcal{X}\mathcal{Y} ext{-}Static$	140	142	1	1	$284 (\pm 16)$
$\mathcal{XY} ext{-}Adaptive$	77	169	1	1	$248 (\pm 13)$
Fixed	61	173	1	1	$236 (\pm 12)$
Uniform	136	136	135	135	$541 (\pm 26)$

Random instances

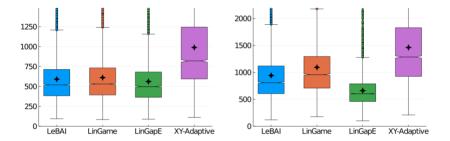


Figure: Empirical stopping time $(\mathcal{K} = \mathcal{Z})$ for $d \in \{6, 12\}$.

Table: Empirical stopping time $(\pm \sigma)$ with their original stopping rule or with ours (3) on the hard instance $(\mathcal{K} = \mathcal{Z})$.

	LinGame	LinGapE	$\mathcal{X}\mathcal{Y} ext{-}Adaptive$
Original	$102613 (\pm 15344)$	$146209 (\pm 16429)$	$302417 (\pm 29938)$
Modified	$271 (\pm 41)$	$245 (\pm 42)$	$248 (\pm 37)$

Computational relaxations

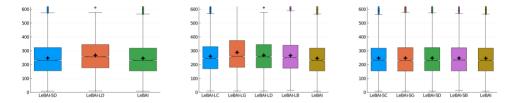


Figure: Empirical stopping time on the hard instance ($\mathcal{K} = \mathcal{Z}$) for (a) the lazy and sticky update, and different implementations of (b) the lazy scheme and (c) the sticky scheme. "-S" denotes the sticky scheme and "-L" the lazy one. The notations for implementations are: "-C" for the constant one with $T_0 = 10$, "-G" for the geometric one with (T_0, γ) = (10, 0.2), "-D" for geometrically decreasing one with (T_0, γ) = (10, 0.2) and "-B" for the Bernoulli one with parameter p = 0.1.

Tracking and forced exploration

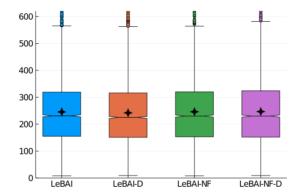


Figure: Empirical stopping time on the hard instance ($\mathcal{K} = \mathcal{Z}$). "-D" denotes when the D-Tracking is used instead of C-Tracking and "-NF" denotes the removal of forced exploration.

Drawings