Choosing Answers in ε-Best-Answer
Identification for Linear Bandits
Université
de Lille

Marc Jourdan, Rémy Degenne

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9198-CRIStAL, F-59000 Lille, France

Furthest answer

Identifying z as an ε-optimal answer is equivalent to rejecting its alternative.
? How to choose among the set of ε-optimal answers ?
Furthest answer: $z_{F}(\mu)$ is the ε-optimal answer for which its alternative is the easiest to reject by using an optimal allocation over arms $w_{F}(\mu)$.

$$
\left(z_{F}(\mu), w_{F}(\mu)\right)=\underset{(z, w) \in \mathcal{Z}_{\varepsilon}(\mu) \times \Delta_{K}}{\arg \max } \inf _{\lambda \in \neg_{\varepsilon} z} \frac{1}{2}\|\mu-\lambda\|_{V_{w}}^{2}
$$

Assumption: unique furthest answer, i.e. $\left|z_{F}(\mu)\right|=1$.
Numerical simulations: $z_{1}=\mu=(1,0), z_{2} \in \mathcal{Z}_{\varepsilon}^{\operatorname{mul}}(\mu)$ and $z_{3}, z_{4} \in \mathcal{Z} \backslash \mathcal{Z}_{\varepsilon}^{\operatorname{mul}}(\mu)$.

Figure 1: (a) Proportion of $z_{F}(\mu) \notin z^{\star}(\mu)$. (b) Ratio between $T_{\varepsilon}^{m \mathrm{ml}}(\mu)$ and the value at $z^{\star}(\mu)$.

Adapting any BAI algorithm for ε-BAI

? How to stop to obtain an (ε, δ)-PAC strategy ?
GLR stopping rule: Given $z_{t} \in \mathcal{Z}_{\varepsilon}\left(\mu_{t-1}\right)$, stop when

$$
\begin{equation*}
\inf _{\lambda \in \varepsilon z_{t}}\left\|\mu_{t-1}-\lambda\right\|_{V_{N_{t-1}}}^{2}>2 \beta(t-1, \delta), \tag{1}
\end{equation*}
$$

where $N_{t-1}^{a}=\sum_{s=1}^{t-1} \mathbf{1}_{\left\{a_{s}=a\right\}}, \mu_{t-1}=V_{N_{t-1}}^{-1} \sum_{s=1}^{t-1} X_{s}^{a_{s}} a_{s}$ and

$$
\begin{equation*}
\beta(t, \delta)=2 K \ln (4+\ln (t / K))+K \mathcal{C}^{g_{G}}(\ln (1 / \delta) / K) \tag{2}
\end{equation*}
$$

with $\mathcal{C}^{g_{G}}(x) \approx x+\ln (x)$, see Kaufmann and Koolen (2018).
? Which $z_{t} \in \mathcal{Z}_{\varepsilon}\left(\mu_{t-1}\right)$ should we recommend to stop as early as possible ? Instantaneous furthest answer: ε-optimal answer with highest GLR

$$
z_{F}\left(\mu_{t-1}, N_{t-1}\right)=\underset{z \in \mathcal{Z}_{\varepsilon}\left(\mu_{t-1}\right)}{\arg \max } \inf _{\lambda \in \neg_{\varepsilon} z_{t}}\left\|\mu_{t-1}-\lambda\right\|_{V_{N_{t-1}}}^{2}
$$

Other choices are inefficient: greedy (samples) or furthest (computation) answers.
? How to modify any BAI algorithms to be (ε, δ)-PAC ?
use GLR stopping rule with $z_{t} \in z_{F}\left(\mu_{t-1}, N_{t-1}\right)$,
keep the sampling rule unchanged.
10% lower empirical stopping time when using $z_{F}\left(\mu_{t-1}, N_{t-1}\right)$ instead of $z^{\star}\left(\mu_{t-1}\right)$.

L \quad BAI

Input: \mathcal{Z}-oracle $\mathcal{L}^{\mathcal{Z}}$ and learner $\mathcal{L}^{\mathcal{K}}$ on \triangle_{K}
Pull once each arm $a \in \mathcal{K}$, set $n_{0}=K$ and $W_{n_{0}}=1_{K}$;
For $t \geq n_{0}+1$
Get $z_{t} \in z_{F}\left(\mu_{t-1}, N_{t-1}\right)$;
If (1) holds for z_{t} then return z_{t};
Get $\left(\tilde{z}_{t}, w_{t}^{\mathcal{L}^{\mathcal{K}}}\right)$ from $\mathcal{L}^{\mathcal{Z}} \times \mathcal{L}^{\mathcal{K}}$;
Let $w_{t}=\frac{1 \mathcal{K}_{K}}{t K}+\left(1-\frac{1}{t}\right) w_{t}^{\mathcal{L}^{\mathcal{K}}}$ and $W_{t}=W_{t-1}+w_{t}$;
Closest alternative: $\lambda_{t} \in \arg \min _{\lambda \in \neg_{\varepsilon} \tilde{z}_{t}}\left\|\mu_{t-1}-\lambda\right\|_{V_{w_{t}}}^{2}$;
Optimistic gains: $\forall a \in \mathcal{K}, U_{t}^{a}=\left(\left\|\mu_{t-1}-\lambda_{t}\right\|_{a a^{\top}}+\sqrt{c_{t-1}^{a}}\right)^{2}$;
Feed $\mathcal{L}^{\mathcal{K}}$ with gain $g_{t}(w)=\left(1-\frac{1}{t}\right)\left\langle w, U_{t}\right\rangle$;
Pull $a_{t} \in \arg \min _{a \in \mathcal{K}} N_{t-1}^{a}-W_{t}^{a}$, observe $X_{t}^{a_{t}}$;
Theorem 1. Let $\mathcal{L}^{\mathcal{K}}$ with sub-linear regret (e.g. AdaHedge) and $\mathcal{L}^{\mathcal{Z}}$ returning $\tilde{z}_{t} \in z_{F}\left(\mu_{t-1}\right)$. Using (2) as stopping threshold $\beta(t, \delta)$, L $\varepsilon B A /$ yields an $(\varepsilon, \delta)-P A C$ algorithm and, for all $\mu \in \mathcal{M}$ such that $\left|z_{F}(\mu)\right|=1$,

$$
\limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\mu}\left[\tau_{\delta}\right]}{\ln (1 / \delta)} \leq T_{\varepsilon}(\mu) .
$$

Efficient heuristic: $\mathcal{L}^{\mathcal{Z}}$ uses $\tilde{z}_{t}=z_{t}$.

Experiments

Hard instance with $\mathcal{K}=\mathcal{Z}: z_{1}=\mu=(1,0), z_{2}=(0,1), z_{3}=\left(\cos \left(\phi_{1}\right), \sin \left(\phi_{1}\right)\right)$, $z_{4}=\left(\cos \left(\phi_{2}\right), \sin \left(\phi_{2}\right)\right)$ where $\left(\phi_{1}, \phi_{2}\right)=\left(\frac{1}{10} \theta_{\varepsilon}, \frac{11}{10} \theta_{\varepsilon}\right), \theta_{\varepsilon}=\arccos (1-\varepsilon)$ and $\varepsilon=5 \%$.

Figure 2: Empirical stopping time at $\delta=1 \%$ (star equals mean) for (a) modified BAI algorithms (add) and (b) heuristic L L BAl (mul). "-G" is $z_{t} \in z^{\star}\left(\mu_{t-1}\right)$. "-O" is the ε-gap stopping rule with
$z_{t} \in z^{\star}\left(\mu_{t-1}\right)$.

Conclusion

1. Don't choose greedily: aim at identifying the furthest answer !
2. Simple procedure to adapt your favorite BAI algorithm to ε-BAI.
3. LєBAI, asymptotically optimal and empirically competitive.
