

Motivation

Initial goal: Identify the item having the highest averaged return.

Problem: When the two best items have highly similar averaged return, the number of samples required to differentiate them is large.

Corrected goal: Identify one item which is ε -close to the best one (ε -BAI).

Challenge: Multiple correct answers.

Problem Statement

Transductive linear Gaussian bandits:

- arm $a \in \mathcal{K}$, finite subset of \mathbb{R}^d ,
- answer $z \in \mathbb{Z}$, finite subset of \mathbb{R}^d ,
- unknown bounded mean parameter, $\mu \in \mathcal{M} \subseteq \mathbb{R}^d$.

At time t, pull $a_t \in \mathcal{K}$ and observe $X_t^{a_t} \sim \mathcal{N}(\langle \mu, a_t \rangle, 1)$.

Goal: Identify one ε -optimal answer, $z \in \mathcal{Z}_{\varepsilon}(\mu)$ with $\varepsilon \geq 0$.

Two notions of ε -optimality:

- additive, $\mathcal{Z}^{add}_{\varepsilon}(\mu) = \{z \in \mathcal{Z} : \langle \mu, z \rangle \ge \max_{z \in \mathcal{Z}} \langle \mu, z \rangle \varepsilon\},\$
- multiplicative, $\mathcal{Z}_{\varepsilon}^{\mathrm{mul}}(\mu) = \{z \in \mathcal{Z} : \langle \mu, z \rangle \ge (1 \varepsilon) \max_{z \in \mathcal{Z}} \langle \mu, z \rangle \}.$

Greedy answer, $z^{\star}(\mu) = \arg \max_{z \in \mathbb{Z}} \langle \mu, z \rangle$, unique correct answer in BAI ($\varepsilon = 0$).

(ε, δ) -PAC identification strategy

Fixed-confidence setting, $\delta \in (0, 1)$. Three rules:

- sampling rule, $a_t \in \mathcal{K}$,
- recommendation rule, $z_t \in \mathcal{Z}$,
- *stopping* rule, τ_{δ} .

Requirement: (ε, δ) -PAC, $\mathbb{P}_{\mu} [\tau_{\delta} < +\infty, z_{\tau_{\delta}} \notin \mathcal{Z}_{\varepsilon}(\mu)] \leq \delta$.

Objective: Minimize $\mathbb{E}_{\mu}[\tau_{\delta}]$.

- What is the best one could achieve ?
- Solution Degenne and Koolen (2019): For all (ε, δ) -PAC strategy, for all $\mu \in \mathcal{M}$,

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\ln(1/\delta)} \ge T_{\varepsilon}(\mu) ,$$

where the inverse of the characteristic time is

$$T_{\varepsilon}(\mu)^{-1} = \max_{z \in \mathcal{Z}_{\varepsilon}(\mu)} \max_{w \in \Delta_{K}} \inf_{\lambda \in \neg_{\varepsilon} z} \frac{1}{2} \|\mu - \lambda\|_{V_{w}}^{2}.$$

Alternative to $z \in \mathcal{Z}$: $\neg_{\varepsilon} z = \{\lambda \in \mathcal{M} : z \notin \mathcal{Z}_{\varepsilon}(\lambda)\}.$

 \triangle_K simplex, $V_w = \sum_{a \in \mathcal{K}} w^a a a^{\mathsf{T}}$ design matrix with norm $\|\cdot\|_{V_w}$.

Choosing Answers in ε **-Best-Answer** Identification for Linear Bandits

Marc Jourdan, Rémy Degenne Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9198-CRIStAL, F-59000 Lille, France

$$\inf_{\Xi_{\neg_{\varepsilon}}z} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2 .$$

$$B(t-1,\delta)$$
, (1)

LarepsilonBAI

Input: \mathcal{Z} -oracle $\mathcal{L}^{\mathcal{Z}}$ and learner $\mathcal{L}^{\mathcal{K}}$ on \triangle_{K} . Pull once each arm $a \in \mathcal{K}$, set $n_0 = K$ and $W_{n_0} = 1_K$; For $t \ge n_0 + 1$ Get $z_t \in z_F(\mu_{t-1}, N_{t-1});$

If (1) holds for z_t then return z_t ;

Get $\left(\tilde{z}_t, w_t^{\mathcal{L}^{\mathcal{K}}}\right)$ from $\mathcal{L}^{\mathcal{Z}} \times \mathcal{L}^{\mathcal{K}}$;

Let $w_t = \frac{\mathbf{1}_K}{tK} + \left(1 - \frac{1}{t}\right) w_t^{\mathcal{L}^{\mathcal{K}}}$ and Closest alternative: $\lambda_t \in \arg \min$

Optimistic gains: $\forall a \in \mathcal{K}, U_t^a =$

Feed $\mathcal{L}^{\mathcal{K}}$ with gain $g_t(w) = (1 - 1)^{-1}$

Pull $a_t \in \operatorname{arg\,min}_{a \in \mathcal{K}} N^a_{t-1} - W^a_t$, observe $X^{a_t}_t$;

algorithm and, for all $\mu \in \mathcal{M}$ such that $|z_F(\mu)| = 1$,

limsu $\delta \rightarrow 0$

Efficient heuristic: $\mathcal{L}^{\mathcal{Z}}$ uses $\tilde{z}_t = z_t$.

Experiments

arepsilon=5% .

 $z_t \in z^\star(\mu_{t-1}).$

Conclusion

- 3. L ε BAI, asymptotically optimal and empirically competitive.

$$W_{t} = W_{t-1} + w_{t};$$

$$h_{\lambda \in \neg_{\varepsilon} \tilde{z}_{t}} \|\mu_{t-1} - \lambda\|_{V_{w_{t}}}^{2};$$

$$(\|\mu_{t-1} - \lambda_{t}\|_{aa^{\mathsf{T}}} + \sqrt{c_{t-1}^{a}})^{2};$$

$$\frac{1}{t} \langle w, U_{t} \rangle;$$
observe $X_{t}^{a_{t}}$.

Theorem 1. Let $\mathcal{L}^{\mathcal{K}}$ with sub-linear regret (e.g. AdaHedge) and $\mathcal{L}^{\mathcal{Z}}$ returning $\tilde{z}_t \in z_F(\mu_{t-1})$. Using (2) as stopping threshold $\beta(t, \delta)$, L ε BAI yields an (ε, δ) -PAC

$$\ln \frac{\mathbb{E}_{\mu} [\tau_{\delta}]}{\ln (1/\delta)} \leq T_{\varepsilon}(\mu) .$$

Don't choose greedily: aim at identifying the *furthest* answer ! 2. Simple procedure to adapt your favorite BAI algorithm to ε -BAI.