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Motivation

Preference-based M-estimator

Lower bound on the estimation error

Fact: Using preference data outperforms methods based on positive exam-
ples only, e.g., supervised fine-tuning vs. alignment phase.

How can preferences explain these empirical performance gains?

This paper: Estimation for parametric distributions with preferences.

Take-home message

e Preference-based M-estimators have smaller asymptotic variance than
sample-only M-estimators.

e Deterministic preference-based MLE has an accelerated estimation error
rate of O(n "), improving upon the rate ©(n~'/?) of M-estimators.

e Matching minimax lower bound Q(n—1), up to constants.

The stochastic preferences MLE is

G5P ¢ argmin{L5°(0) — % S logo(Zils(Xi, Yi))} (SP MLE)

0eO 1€ [n]

@%Pdet defined similarly when preferences are deterministic.
Theorem 1 (Smaller asymptotic variance).
Under regularity and geomeftric assumptions on pg and ¢y

e 957 and 95T are asymptotically normal estimators,
e With asymptotic variance V,;," ** < V3P < T(p$?)~ 1.

Beyond M-estimators for deterministic preferences

Problem statement

Distribution py € P(X) with § € © C R* and X C R<.
== Observe samples (X;,Y;);cpn) ~ pgi[?”] with 6* € ©.

Preference function 4y : X* — R, e.qg., fy(x,y) = ro(x) — 19 (y).
e Reward function rg : X — R, e.g., 79 = log py.

== Observe preference Z; for each pair (X;, Y;)

1 with prob. o(fp«(X;,Y;))
—1 otherwise

e Deterministic: Z; = sign(4y-(X;,Y;)) .

e Stochastic: 7, = { with o(z) = (1+e %)~ 1,

Goal: Estimate the unknown 6* based on n samples with preferences.

Example: Gaussian natural parameter 6 with known X and ry = log pg, I.€.,
lo(X;,Y;) = (X; = Y;,0 — SN (X, +Y;)/2).

Sample-only M-estimator

The sample-only maximum likelihood estimator is

05° cargmin L5°(9) with L50(0) € — Y logp§?(X,,Yi). (SO MLE)

0cO 1€ [n]

Under enough regularity, SO MLE is asymptotically normal, i.e.,

V(65 — 6%) v oo N(05, Z(p52)7Y)

where Z(py) % 5, [— V3 log pg] is the Fisher information matrix of py.

Example: L5°(0) = [|0 — 65°||2 with 650 = L 3, B7HX; + V7).

Minimizers of the empirical 0-1 loss are

C, Eargmin Y 1(Zily(X;,Y;) < 0) = {0 Vi € [n], Zilo(X,,Yi) >0} .

0eo 1€ [n]

Any estimator @f;E e C,. The deterministic preferences MLE is
OPF € argmin {L3°(0) [0 € C,,) . (DP MLE)

Theorem 2 (Fast estimation rate within C,). For Gaussian distributions
with known > and ry = log pg, for all n > O(log(1/9)), with probability 1 — ¢,

Vo, cC,. |6, — 0

. <0 (ﬁ log(1/9) log n> with Ag =100 O(Vd) .

n

Theorem also holds under geometric assumptions on py and /y:
e Identifiability under preferences feedback,

e Linearization validity of the preferences constraints, i.e., C,, C C.,

for all © near 0.

Proof sketch: let R,, ,, def max{e > 0 | 0" 4+ cu € 5n} forall u € Si._1. Then,

Rn,u < m[ln]{ve*,U(Xm l/’L) ‘ 69* (X“)/;)<’LL, v@*ge* (X’w YZ)> < O} .
1e|n

Theorem 3 (Fast estimation rate is minimax optimal). For Gaussian dis-
tributions with known %> and rg = log pg, for all n,

Z} > Q) (min <( A‘:/a,\/g}) |

Theorem also holds under geometric assumptions on py and 4y
e Squared Hellinger distance H*(P, Q) is bounded by a quadratic,

« The Bhattacharyya coefficient BC(P, Q) & |v/PQ||, restricted to the set

of paired observations with disagreeing preference BC is Lipschitz.

0, — p*

inf sup E gn [
0, 0-co Lo .n4u

Open problem: Close the /d gap between the upper and lower bounds.

Proof sketch: Assouad’s lemma, TV(P®" Q%") < \/ZnHZ(IP’,Q) and
H?(g5,q0) = BC(0,0) + H*(pS?, p®) for all 0,6 € ©

Experiments on Gaussian with log-likelihood reward

Restrictive geometric assumptions

X Monotonic py, €.g9., Exponential, Laplace and Pareto with known location.
v/ Other distributions, e.g., Laplace with known scale, Rayleigh.
v Monotonic rewards ry = g o py, €.¢., odds-ratio g(x) = —log(z~! — 1).

Variants: Gaussian for ry = log py with
X Reference model ¢y — ¢y, with known 6, € O.
v Margins ¢y + ¢ with known c € R.
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Figure 1: Estimation error with N (6*,1;) where 6* ~ U([1,2]¢), as a function of (a) the
sample size n for d = 20 and (b) the dimension d for n = 10%*.

Given loss f, normalization 5 > 0 and regularization A > 0,

0720 € argmin{LE(0) + X Y f(BZile(X:,Yi))} -
0cO
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Figure 2: (a) Notable examples of binary classification loss functions. (b) Estimation error
when minimizing the empirical losses for N'(6*, 1) where 6* ~ U([1,2]) and 8 = A = 1.




