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Motivation
Fact: Using preference data outperforms methods based on positive exam-
ples only, e.g., supervised fine-tuning vs. alignment phase.

How can preferences explain these empirical performance gains?

This paper: Estimation for parametric distributions with preferences.

Take-home message

• Preference-based M-estimators have smaller asymptotic variance than
sample-only M-estimators.

• Deterministic preference-based MLE has an accelerated estimation error
rate of O(n−1), improving upon the rate Θ(n−1/2) of M-estimators.

• Matching minimax lower bound Ω(n−1), up to constants.

Problem statement

Distribution pθ ∈ P(X ) with θ ∈ Θ ⊆ Rk and X ⊆ Rd.

☞ Observe samples (Xi, Yi)i∈[n] ∼ p
⊗[2n]
θ⋆ with θ⋆ ∈ Θ.

Preference function ℓθ : X 2 → R, e.g., ℓθ(x, y) = rθ(x)− rθ(y).
• Reward function rθ : X → R, e.g., rθ = log pθ.
☞ Observe preference Zi for each pair (Xi, Yi)

• Stochastic: Zi =

{
1 with prob. σ(ℓθ⋆(Xi, Yi))

−1 otherwise
with σ(x)

def
= (1+e−x)−1.

• Deterministic: Zi = sign(ℓθ⋆(Xi, Yi)) .

Goal: Estimate the unknown θ⋆ based on n samples with preferences.

Example: Gaussian natural parameter θ with known Σ and rθ = log pθ, i.e.,
ℓθ(Xi, Yi) = ⟨Xi − Yi, θ − Σ−1(Xi + Yi)/2⟩.

Sample-only M-estimator

The sample-only maximum likelihood estimator is

θ̂SO
n ∈ argmin

θ∈Θ
LSO
n (θ) with LSO

n (θ)
def
= −

∑
i∈[n]

log p⊗2
θ (Xi, Yi) . (SO MLE)

Under enough regularity, SO MLE is asymptotically normal, i.e.,
√
n(θ̂SO

n − θ⋆)⇝n→+∞ N (0k, I(p⊗2
θ⋆ )

−1) ,

where I(pθ)
def
= Epθ

[−∇2
θ log pθ] is the Fisher information matrix of pθ.

Example: LSO
n (θ) = ∥θ − θ̂SO

n ∥2Σ with θ̂SO
n = 1

2n

∑
i∈[n] Σ

−1(Xi + Yi).

Preference-based M-estimator
The stochastic preferences MLE is

θ̂SP
n ∈ argmin

θ∈Θ
{LSO

n (θ)− 1

n

∑
i∈[n]

log σ(Ziℓθ(Xi, Yi))} . (SP MLE)

θ̂SPdet
n defined similarly when preferences are deterministic.

Theorem 1 (Smaller asymptotic variance).
Under regularity and geometric assumptions on pθ and ℓθ:

• θ̂SP
n and θ̂SPdet

n are asymptotically normal estimators,
• with asymptotic variance V SPdet

θ⋆ ⪯ V SP
θ⋆ ⪯ I(p⊗2

θ⋆ )−1.

Beyond M-estimators for deterministic preferences

Minimizers of the empirical 0-1 loss are

Cn
def
= argmin

θ∈Θ

∑
i∈[n]

1 (Ziℓθ(Xi, Yi) < 0) = {θ | ∀i ∈ [n], Ziℓθ(Xi, Yi) ≥ 0} .

Any estimator θ̂AE
n ∈ Cn. The deterministic preferences MLE is

θ̂DP
n ∈ argmin

{
LSO
n (θ) | θ ∈ Cn

}
. (DP MLE)

Theorem 2 (Fast estimation rate within Cn). For Gaussian distributions
with known Σ and rθ = log pθ, for all n ≥ Õ(log(1/δ)), with probability 1− δ,

∀θ̂n ∈ Cn,
∥∥∥θ̂n − θ⋆

∥∥∥
Σ
≤ O

(
Ad

n
log(1/δ) log n

)
with Ad =+∞ O(

√
d) .

Theorem also holds under geometric assumptions on pθ and ℓθ:
• Identifiability under preferences feedback,
• Linearization validity of the preferences constraints, i.e., Cn ⊆ C̃n,

• Positive regular p.d.f. of Vθ⋆,u(Xi, Yi)
def
= ℓθ⋆ (Xi,Yi)

−⟨u,∇θ⋆ℓθ⋆ (Xi,Yi)⟩ for all u near 0.

Proof sketch: let Rn,u
def
= max{ε ≥ 0 | θ⋆ + εu ∈ C̃n} for all u ∈ Sk−1. Then,

Rn,u ≤ min
i∈[n]

{Vθ⋆,u(Xi, Yi) | ℓθ⋆(Xi, Yi)⟨u,∇θ⋆ℓθ⋆(Xi, Yi)⟩ < 0} .

Restrictive geometric assumptions

✗ Monotonic pθ, e.g., Exponential, Laplace and Pareto with known location.
✓ Other distributions, e.g., Laplace with known scale, Rayleigh.
✓ Monotonic rewards rθ = g ◦ pθ, e.g., odds-ratio g(x) = − log(x−1 − 1).

Variants: Gaussian for rθ = log pθ with
✗ Reference model ℓθ − ℓθ0 with known θ0 ∈ Θ.
✓ Margins ℓθ + c with known c ∈ R.

Lower bound on the estimation error
Theorem 3 (Fast estimation rate is minimax optimal). For Gaussian dis-
tributions with known Σ and rθ = log pθ, for all n,

inf
θ̂n

sup
θ⋆∈Θ

E
q
⊗[n]

θ⋆,hdet

[∥∥∥θ̂n − θ⋆
∥∥∥
Σ

]
≥ Ω

(
min

{
Ad

√
d

n
,

√
d

n

})
.

Theorem also holds under geometric assumptions on pθ and ℓθ:
• Squared Hellinger distance H2(P,Q) is bounded by a quadratic,

• The Bhattacharyya coefficient BC(P,Q)
def
=
∥∥√PQ

∥∥
1

restricted to the set
of paired observations with disagreeing preference B̃C is Lipschitz.

Open problem: Close the
√
d gap between the upper and lower bounds.

Proof sketch: Assouad’s lemma, TV(P⊗n,Q⊗n) ≤
√
2nH2(P,Q) and

H2(qθ̃, qθ) = B̃C(θ̃, θ) + H2(p⊗2

θ̃
, p⊗2

θ ) for all θ, θ̃ ∈ Θ

Experiments on Gaussian with log-likelihood reward

Figure 1: Estimation error with N (θ⋆, Id) where θ⋆ ∼ U([1, 2]d), as a function of (a) the
sample size n for d = 20 and (b) the dimension d for n = 104.

Given loss f , normalization β > 0 and regularization λ ≥ 0,

θ̂f,λ,βn ∈ argmin
θ∈Θ

{LSO
n (θ) + λ

∑
i∈[n]

f(βZiℓθ(Xi, Yi))} .
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Figure 2: (a) Notable examples of binary classification loss functions. (b) Estimation error
when minimizing the empirical losses for N (θ⋆, 1) where θ⋆ ∼ U([1, 2]) and β = λ = 1.


