

Learning Parametric Distributions from Samples and Preferences

Marc Jourdan, Gizem Yüce and Nicolas Flammarion

TML, School of Computer and Communication Sciences, EPFL, Switzerland

Motivation

Fact: Using preference data outperforms methods based on positive examples only, e.g., supervised fine-tuning vs. alignment phase.

How can preferences explain these empirical performance gains?

This paper: Estimation for parametric distributions with preferences.

Take-home message

- Preference-based M-estimators have smaller asymptotic variance than sample-only M-estimators.
- Deterministic preference-based MLE has an accelerated estimation error rate of $\mathcal{O}(n^{-1})$, improving upon the rate $\Theta(n^{-1/2})$ of M-estimators.
- Matching minimax lower bound $\Omega(n^{-1})$, up to constants.

Problem statement

Distribution $p_{\theta} \in \mathcal{P}(\mathcal{X})$ with $\theta \in \Theta \subseteq \mathbb{R}^k$ and $\mathcal{X} \subseteq \mathbb{R}^d$.

Observe samples $(X_i, Y_i)_{i \in [n]} \sim p_{\theta^*}^{\otimes [2n]}$ with $\theta^* \in \Theta$.

Preference function $\ell_{\theta}: \mathcal{X}^2 \to \mathbb{R}$, e.g., $\ell_{\theta}(x,y) = r_{\theta}(x) - r_{\theta}(y)$.

- **Reward** function $r_{\theta}: \mathcal{X} \to \mathbb{R}$, e.g., $r_{\theta} = \log p_{\theta}$.
- Observe preference Z_i for each pair (X_i, Y_i)
- Stochastic: $Z_i = \begin{cases} 1 & \text{with prob. } \sigma(\ell_{\theta^*}(X_i, Y_i)) \\ -1 & \text{otherwise} \end{cases}$ with $\sigma(x) \stackrel{\text{def}}{=} (1 + e^{-x})^{-1}$.
- Deterministic: $Z_i = \operatorname{sign}(\ell_{\theta^{\star}}(X_i, Y_i))$.

Goal: Estimate the unknown θ^* based on n samples with preferences.

Example: Gaussian natural parameter θ with known Σ and $r_{\theta} = \log p_{\theta}$, i.e., $\ell_{\theta}(X_i, Y_i) = \langle X_i - Y_i, \theta - \Sigma^{-1}(X_i + Y_i)/2 \rangle$.

Sample-only M-estimator

The sample-only maximum likelihood estimator is

$$\widehat{\theta}_n^{\mathrm{SO}} \in \arg\min_{\theta \in \Theta} L_n^{\mathrm{SO}}(\theta) \ \, \text{with} \ \, L_n^{\mathrm{SO}}(\theta) \stackrel{\mathsf{def}}{=} - \sum_{i \in [n]} \log p_{\theta}^{\otimes 2}(X_i, Y_i) \, . \tag{SO MLE}$$

Under enough regularity, SO MLE is asymptotically normal, i.e.,

$$\sqrt{n}(\widehat{\theta}_n^{SO} - \theta^*) \leadsto_{n \to +\infty} \mathcal{N}(0_k, \mathcal{I}(p_{\theta^*}^{\otimes 2})^{-1}),$$

where $\mathcal{I}(p_{\theta}) \stackrel{\mathsf{def}}{=} \mathbb{E}_{p_{\theta}}[-\nabla_{\theta}^2 \log p_{\theta}]$ is the Fisher information matrix of p_{θ} .

Example: $L_n^{\mathrm{SO}}(\theta) = \|\theta - \widehat{\theta}_n^{\mathrm{SO}}\|_{\Sigma}^2$ with $\widehat{\theta}_n^{\mathrm{SO}} = \frac{1}{2n} \sum_{i \in [n]} \Sigma^{-1}(X_i + Y_i)$.

Preference-based M-estimator

The stochastic preferences MLE is

$$\widehat{\theta}_n^{\mathrm{SP}} \in \arg\min_{\theta \in \Theta} \{ L_n^{\mathrm{SO}}(\theta) - \frac{1}{n} \sum_{i \in [n]} \log \sigma(Z_i \ell_{\theta}(X_i, Y_i)) \} . \tag{SP MLE}$$

 $\widehat{\theta}_n^{\mathrm{SP}_{\mathrm{det}}}$ defined similarly when preferences are deterministic.

Theorem 1 (Smaller asymptotic variance).

Under regularity and **geometric assumptions** on p_{θ} and ℓ_{θ} :

- ullet $\widehat{\theta}_n^{SP}$ and $\widehat{\theta}_n^{SP_{det}}$ are asymptotically normal estimators,
- with asymptotic variance $V_{\theta^{\star}}^{SP_{det}} \preceq V_{\theta^{\star}}^{SP} \preceq \mathcal{I}(p_{\theta^{\star}}^{\otimes 2})^{-1}$.

Beyond M-estimators for deterministic preferences

Minimizers of the **empirical** 0-1 **loss** are

$$C_n \stackrel{\mathsf{def}}{=} \underset{\theta \in \Theta}{\operatorname{arg\,min}} \sum_{i \in [n]} \mathbb{1} \left(Z_i \ell_{\theta}(X_i, Y_i) < 0 \right) = \{ \theta \mid \forall i \in [n], \ Z_i \ell_{\theta}(X_i, Y_i) \ge 0 \} \ .$$

Any estimator $\widehat{\theta}_n^{\mathrm{AE}} \in \mathcal{C}_n$. The deterministic preferences MLE is

$$\widehat{\theta}_n^{\mathrm{DP}} \in \arg\min\left\{L_n^{\mathrm{SO}}(\theta) \mid \theta \in \mathcal{C}_n\right\}$$
 (DP MLE)

Theorem 2 (Fast estimation rate within C_n). For Gaussian distributions with known Σ and $r_{\theta} = \log p_{\theta}$, for all $n \geq \widetilde{\mathcal{O}}(\log(1/\delta))$, with probability $1 - \delta$,

$$\forall \widehat{\theta}_n \in \mathcal{C}_n, \quad \left\| \widehat{\theta}_n - \theta^\star \right\|_{\Sigma} \leq \mathcal{O}\left(\frac{A_d}{n} \log(1/\delta) \log n \right) \quad \textit{with} \quad A_d =_{+\infty} \mathcal{O}(\sqrt{d}) \; .$$

Theorem also holds under geometric assumptions on p_{θ} and ℓ_{θ} :

- Identifiability under preferences feedback,
- Linearization validity of the preferences constraints, i.e., $C_n \subseteq C_n$,
- Positive regular p.d.f. of $V_{\theta^*,u}(X_i,Y_i) \stackrel{\text{def}}{=} \frac{\ell_{\theta^*}(X_i,Y_i)}{-\langle u,\nabla_{\theta^*}\ell_{\theta^*}(X_i,Y_i)\rangle}$ for all u near 0.

Proof sketch: let $R_{n,u} \stackrel{\text{def}}{=} \max\{\varepsilon \geq 0 \mid \theta^* + \varepsilon u \in \widetilde{\mathcal{C}}_n\}$ for all $u \in \mathcal{S}_{k-1}$. Then,

$$R_{n,u} \leq \min_{i \in [n]} \{ V_{\theta^*,u}(X_i, Y_i) \mid \ell_{\theta^*}(X_i, Y_i) \langle u, \nabla_{\theta^*} \ell_{\theta^*}(X_i, Y_i) \rangle < 0 \}.$$

Restrictive geometric assumptions

- \times Monotonic p_{θ} , e.g., Exponential, Laplace and Pareto with known location.
- Other distributions, e.g., Laplace with known scale, Rayleigh.
- ✓ Monotonic rewards $r_{\theta} = g \circ p_{\theta}$, e.g., odds-ratio $g(x) = -\log(x^{-1} 1)$.

Variants: Gaussian for $r_{\theta} = \log p_{\theta}$ with

- X Reference model $\ell_{\theta} \ell_{\theta_0}$ with known $\theta_0 \in \Theta$.
- \checkmark Margins $\ell_{\theta}+c$ with known $c\in\mathbb{R}$.

Lower bound on the estimation error

Theorem 3 (Fast estimation rate is minimax optimal). For Gaussian distributions with known Σ and $r_{\theta} = \log p_{\theta}$, for all n,

$$\inf_{\widehat{\theta}_n} \sup_{\theta^* \in \Theta} \mathbb{E}_{q_{\theta^*, h_{det}}^{\otimes [n]}} \left[\left\| \widehat{\theta}_n - \theta^* \right\|_{\Sigma} \right] \ge \Omega \left(\min \left\{ \frac{A_d \sqrt{d}}{n}, \sqrt{\frac{d}{n}} \right\} \right).$$

Theorem also holds under **geometric assumptions** on p_{θ} and ℓ_{θ} :

- Squared Hellinger distance $H^2(\mathbb{P},\mathbb{Q})$ is bounded by a quadratic,
- The **Bhattacharyya coefficient** $\mathrm{BC}(\mathbb{P},\mathbb{Q}) \stackrel{\mathsf{def}}{=} \|\sqrt{\mathbb{PQ}}\|_1$ restricted to the set of paired observations with disagreeing preference $\widetilde{\mathrm{BC}}$ is **Lipschitz**.

Open problem: Close the \sqrt{d} gap between the upper and lower bounds.

Proof sketch: Assouad's lemma, $\mathrm{TV}(\mathbb{P}^{\otimes n}, \mathbb{Q}^{\otimes n}) \leq \sqrt{2n\mathrm{H}^2(\mathbb{P}, \mathbb{Q})}$ and $\mathrm{H}^2(q_{\widetilde{\theta}}, q_{\theta}) = \widetilde{\mathrm{BC}}(\widetilde{\theta}, \theta) + \mathrm{H}^2(p_{\widetilde{\theta}}^{\otimes 2}, p_{\theta}^{\otimes 2})$ for all $\theta, \widetilde{\theta} \in \Theta$

Experiments on Gaussian with log-likelihood reward

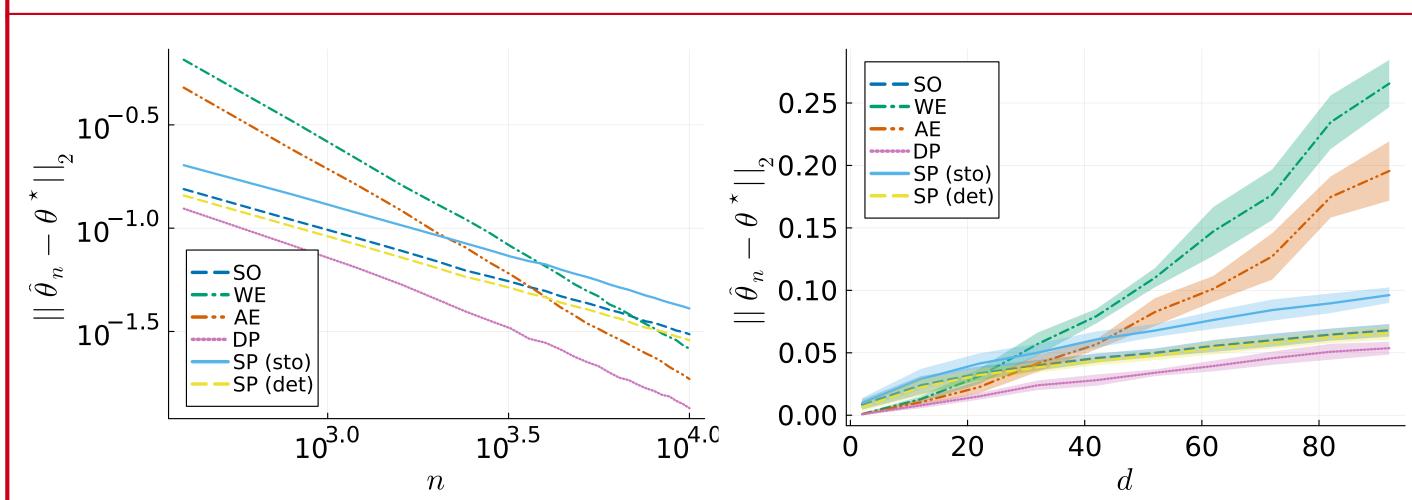


Figure 1: Estimation error with $\mathcal{N}(\theta^{\star}, I_d)$ where $\theta^{\star} \sim \mathcal{U}([1, 2]^d)$, as a function of (a) the sample size n for d=20 and (b) the dimension d for $n=10^4$.

Given loss f, normalization $\beta > 0$ and regularization $\lambda \geq 0$,

$$\widehat{\theta}_n^{f,\lambda,\beta} \in \underset{\theta \in \Theta}{\operatorname{arg\,min}} \{ L_n^{\text{SO}}(\theta) + \lambda \sum_{i \in [n]} f(\beta Z_i \ell_{\theta}(X_i, Y_i)) \} .$$

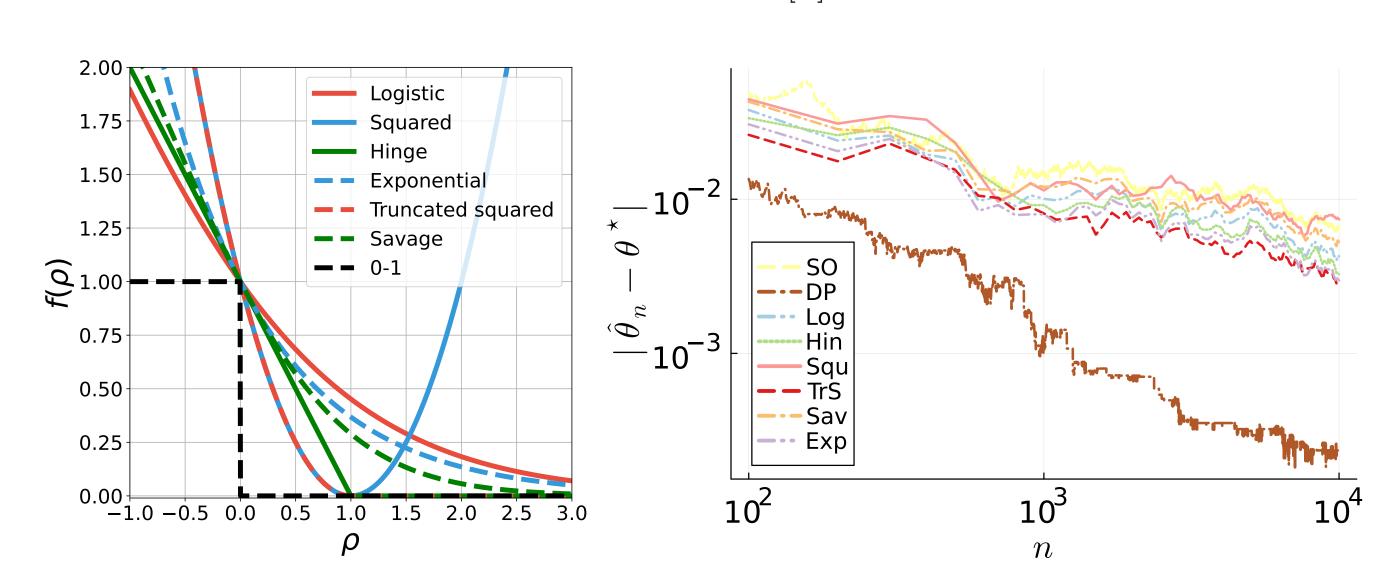


Figure 2: (a) Notable examples of binary classification loss functions. (b) **Estimation error** when minimizing the empirical losses for $\mathcal{N}(\theta^*, 1)$ where $\theta^* \sim \mathcal{U}([1, 2])$ and $\beta = \lambda = 1$.