Differentially Private Best-Arm Identification

Achraf Azize, Marc Jourdan, Aymen Al Marjani, Debabrota Basu

July 1, 2024

Université de Lille

Phase III clinical trials

Goal: Identify a treatment with a high efficiency.

Phase III clinical trials

Goal: Identify a treatment with a high efficiency.

Setting: Pure exploration for stochastic multi-armed bandits.

Sequential hypothesis testing with adaptive data collection.

Sequential decision making under uncertainty

After treating n-1 patients, the physician has a guessed answer for a good treatment $\hat{i}_n \in [K]$.

As the *n*-th patient enters, the physician selects a treatment $I_n \in [K]$ for administration.

Then, it observes a realization $X_n \sim \nu_{I_n}$ with $\nu_i = \mathcal{B}(\mu_i)$.

Best-Arm Identification (BAI)

K arms: arm $i \in [K]$ with $\nu_i = \mathcal{B}(\mu_i) \in \mathcal{D}$ where $\mu_i \in (0, 1)$.

Goal: identify the unique best arm $i^{\star} = \arg \max_{i \in [K]} \mu_i$.

Best-Arm Identification (BAI)

K arms: arm $i \in [K]$ with $\nu_i = \mathcal{B}(\mu_i) \in \mathcal{D}$ where $\mu_i \in (0, 1)$.

Goal: identify the unique best arm $i^{\star} = \arg \max_{i \in [K]} \mu_i$.

Algorithm: at time n,

- Recommendation rule: recommend a candidate answer \hat{i}_n .
- Stopping rule: dictate when to stop sampling .
- Sampling rule: pull an arm I_n and observe $X_n \sim \nu_{I_n}$.

Best-Arm Identification (BAI)

K arms: arm $i \in [K]$ with $\nu_i = \mathcal{B}(\mu_i) \in \mathcal{D}$ where $\mu_i \in (0, 1)$.

Goal: identify the unique best arm $i^{\star} = \arg \max_{i \in [K]} \mu_i$.

Algorithm: at time n,

- Recommendation rule: recommend a candidate answer \hat{i}_n .
- Stopping rule: dictate when to stop sampling .
- Sampling rule: pull an arm I_n and observe $X_n \sim \nu_{I_n}$.

Fixed-confidence: given a confidence pair δ , define a δ -correct stopping time τ_{δ} , i.e. $\mathbb{P}_{\nu}(\tau_{\delta} < +\infty, \hat{\imath}_{\tau_{\delta}} \neq i^{\star}) \leq \delta$.

is Minimize the expected sample complexity $\mathbb{E}_{
u}[au_{\delta}]$.

Lower bound on the expected sample complexity

(Garivier and Kaufmann, 2016) For all δ -correct algorithm,

$$\forall \nu \in \mathcal{D}^{K}, \quad \liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \ge T_{\mathrm{KL}}^{\star}(\nu),$$

Lower bound on the expected sample complexity

(Garivier and Kaufmann, 2016) For all δ -correct algorithm,

$$\forall \nu \in \mathcal{D}^{K}, \quad \liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \ge T_{\mathrm{KL}}^{\star}(\nu),$$

where the inverse of the characteristic time is

$$T_{\mathrm{KL}}^{\star}(\nu)^{-1} = \max_{w \in \Delta_{K}} \min_{j \neq i^{\star}} C_{\mathrm{KL}}(i^{\star}, j; \nu, w) ,$$

with $C_{\mathrm{KL}}(i, j; \nu, w) \approx \mathbb{1} (\mu_{i} > \mu_{j}) \frac{2(\mu_{i} - \mu_{j})^{2}}{1/w_{i} + 1/w_{j}}$

Lower bound on the expected sample complexity

(Garivier and Kaufmann, 2016) For all δ -correct algorithm,

$$\forall \nu \in \mathcal{D}^{K}, \quad \liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \ge T_{\mathrm{KL}}^{\star}(\nu) ,$$

where the inverse of the characteristic time is

$$T_{\mathrm{KL}}^{\star}(\nu)^{-1} = \max_{w \in \Delta_{K}} \min_{j \neq i^{\star}} C_{\mathrm{KL}}(i^{\star}, j; \nu, w) ,$$

with $C_{\mathrm{KL}}(i, j; \nu, w) \approx \mathbb{1} (\mu_{i} > \mu_{j}) \frac{2(\mu_{i} - \mu_{j})^{2}}{1/w_{i} + 1/w_{j}}$

Algorithms: Track-and-Stop, online optimization, Top Two.

TTUCB (Jourdan and Degenne, 2023)

Recommend the empirical best arm $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$.

TTUCB (Jourdan and Degenne, 2023)

- reference reprint Recommend the empirical best arm $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$.
- Generalized likelihood ratio (GLR) stopping rule

$$\tau_{\delta} = \inf\{n \in \mathbb{N} \mid \min_{j \neq \hat{\imath}_n} C_{\mathrm{KL},n}(\hat{\imath}_n, j) > c(n-1, \delta)\},\$$

with $C_{\mathrm{KL},n}(i,j) = C_{\mathrm{KL}}(i,j;\nu_n,N_n)$ and $c(n,\delta) \approx \log(1/\delta) + \mathcal{O}(\log n)$.

Marc Jourdan

TTUCB (Jourdan and Degenne, 2023)

- reference reprint Recommend the empirical best arm $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$.
- Generalized likelihood ratio (GLR) stopping rule

$$\tau_{\delta} = \inf \{ n \in \mathbb{N} \mid \min_{j \neq \hat{\imath}_n} C_{\mathrm{KL},n}(\hat{\imath}_n, j) > c(n-1, \delta) \} ,$$

with $C_{\mathrm{KL},n}(i,j) = C_{\mathrm{KL}}(i,j;\nu_n,N_n)$ and $c(n,\delta) \approx \log(1/\delta) + \mathcal{O}(\log n)$.

Sample $I_n \in \{B_n, C_n\}$ uniformly at random where

UCB leader:
$$B_n = \underset{i \in [K]}{\operatorname{arg\,max}} \left\{ \mu_{n,i} + \sqrt{\log(n)/N_{n,i}} \right\}$$
,
TC challenger: $C_n = \underset{j \neq B_n}{\operatorname{arg\,min}} C_{\operatorname{KL},n}(B_n, j)$.

Differential privacy

△ Rewards may reveal sensitive information about individuals !

Differential privacy

 \triangle Rewards may reveal sensitive information about individuals !

Definition (Dwork and Roth, 2014)

A randomised algorithm A satisfies ε -DP if for any two neighbouring datasets d and d' that differ only in one row and for all sets of output O,

$$\mathbb{P}(\mathcal{A}(d) \in \mathcal{O}) \le \exp(\varepsilon) \mathbb{P}\left(\mathcal{A}\left(d'\right) \in \mathcal{O}\right) \ .$$

Trust models for differentially private BAI

 ε -local differential privacy:

 \bowtie A has only access to private rewards.

ε-global differential privacy:

 \bowtie A has access to the true rewards, but its output is private.

Local Differentially Private Best Arm Identification

Theorem

For all δ -correct ε -local DP algorithm and all instance ν ,

$$\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max\left\{T_{\mathrm{KL}}^{\star}(\nu), c(\varepsilon)^{-1}T_{\mathrm{TV}^{2}}^{\star}(\nu)\right\}\log\frac{1}{2.4\delta},$$
with $c(\varepsilon) = \min\{4, e^{2\varepsilon}\}(e^{\varepsilon} - 1)^{2}$ and $T_{\mathrm{TV}^{2}}^{\star}(\nu) = T_{\mathrm{KL}}^{\star}(\nu_{G})/2$.

Local Differentially Private Best Arm Identification

Theorem

For all δ -correct ε -local DP algorithm and all instance ν ,

$$\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max\left\{T_{\mathrm{KL}}^{\star}(\nu), c(\varepsilon)^{-1}T_{\mathrm{TV}^{2}}^{\star}(\nu)\right\}\log\frac{1}{2.4\delta},$$

with
$$c(\varepsilon) = \min\{4, e^{2\varepsilon}\}(e^{\varepsilon} - 1)^2$$
 and $T^{\star}_{\mathrm{TV}^2}(\nu) = T^{\star}_{\mathrm{KL}}(\nu_G)/2$.

Two hardness regimes depending on ε and the environment ν .

CTB-TT: ε -local DP version of TTUCB

- **1** Private estimator $\tilde{\mu}_n$ based on randomised response:
- Solution Observe private rewards $\widetilde{X}_n \sim \mathcal{B}\left(\frac{X_n(e^{\varepsilon}-1)+1}{e^{\varepsilon}+1}\right)$ instead of X_n .
- **2 Plug** $\tilde{\mu}_n$ in TTUCB.

CTB-TT: ε -local DP version of TTUCB

1 Private estimator $\tilde{\mu}_n$ based on randomised response:

Solution Observe private rewards
$$\widetilde{X}_n \sim \mathcal{B}\left(rac{X_n(e^{\varepsilon}-1)+1}{e^{\varepsilon}+1}\right)$$
 instead of X_n .

2 Plug $\tilde{\mu}_n$ in TTUCB.

Theorem

CTB-TT is ε -local DP, δ -correct and satisfies

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \le \left(1 + \frac{2}{e^{\varepsilon} - 1}\right)^2 T_{\mathrm{TV}^2}^{\star}(\nu) \,.$$

Empirical stopping time ($\delta = 0.01$) (left) $\mu_1 = (0.95, 0.9, 0.9, 0.9, 0.5)$ and (right) $\mu_2 = (0.75, 0.7, 0.7, 0.7, 0.7)$.

Global Differentially Private Best Arm Identification

Theorem

For all δ -correct ε -global DP algorithm and all instance ν ,

$$\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max\left\{T_{\mathrm{KL}}^{\star}(\nu), T_{\mathrm{TV}}^{\star}(\nu)/(6\varepsilon)\right\} \log \frac{1}{2.4\delta},$$

where
$$T_{\mathrm{KL}}^{\star}(\nu) \approx \sum_{i \neq i^{\star}} (\mu_{i^{\star}} - \mu_i)^{-2}$$
 and $T_{\mathrm{TV}}^{\star}(\nu) \approx \sum_{i \neq i^{\star}} (\mu_{i^{\star}} - \mu_i)^{-1}$

Global Differentially Private Best Arm Identification

Theorem

For all δ -correct ε -global DP algorithm and all instance ν ,

$$\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max\left\{T_{\mathrm{KL}}^{\star}(\nu), T_{\mathrm{TV}}^{\star}(\nu)/(6\varepsilon)\right\} \log \frac{1}{2.4\delta},$$

where
$$T_{\text{KL}}^{\star}(\nu) \approx \sum_{i \neq i^{\star}} (\mu_{i^{\star}} - \mu_i)^{-2}$$
 and $T_{\text{TV}}^{\star}(\nu) \approx \sum_{i \neq i^{\star}} (\mu_{i^{\star}} - \mu_i)^{-1}$

Two hardness regimes depending on ε and the environment ν .

Solution Low-privacy regime: $6\varepsilon > \frac{T_{TV}^{\star}(\nu)}{T_{KL}^{\star}(\nu)}$. Privacy is for "free".

Image High-privacy regime: $6\varepsilon < \frac{T_{TV}^*(\nu)}{T_{KL}^*(\nu)}$. Privacy is "dominating".

AdaP-TT: ε -global DP version of TTUCB

- **1** Private estimator with Laplace noise: $\tilde{\mu}_n = \mu_n + \text{Lap}\left(\frac{1}{\varepsilon N_n}\right)$.
- Doubling and forgetting, i.e. phases per arm.
- **2 Plug** $\tilde{\mu}_n$ in TTUCB.
- rivate stopping threshold: $c(n, \delta) \approx \log(1/\delta) + \frac{1}{n\epsilon^2} \log(1/\delta)^2$.

AdaP-TT: *c*-global DP version of TTUCB

- **1** Private estimator with Laplace noise: $\tilde{\mu}_n = \mu_n + \text{Lap}\left(\frac{1}{\varepsilon N_n}\right)$.
- Doubling and forgetting, i.e. phases per arm.
- **2 Plug** $\tilde{\mu}_n$ in TTUCB.
- rivate stopping threshold: $c(n, \delta) \approx \log(1/\delta) + \frac{1}{n\epsilon^2} \log(1/\delta)^2$.

Theorem

AdaP-TT is ε -global DP, δ -correct and satisfies

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \le 4T^{\star}_{\mathrm{KL},\beta}(\nu) \left(1 + \sqrt{1 + (\Delta_{\max}/\varepsilon)^2}\right)$$

which is $\mathcal{O}(\max \{T^{\star}_{\mathrm{KL}}(\nu), T^{\star}_{\mathrm{TV}}(\nu)/\varepsilon\})$ for most instances.

AdaP-TT: *c*-global DP version of TTUCB

- **1** Private estimator with Laplace noise: $\tilde{\mu}_n = \mu_n + \text{Lap}\left(\frac{1}{\varepsilon N_n}\right)$.
- Doubling and forgetting, i.e. phases per arm.
- **2 Plug** $\tilde{\mu}_n$ in TTUCB.
- rivate stopping threshold: $c(n, \delta) \approx \log(1/\delta) + \frac{1}{n\epsilon^2} \log(1/\delta)^2$.

Theorem

AdaP-TT is ε -global DP, δ -correct and satisfies

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \le 4T^{\star}_{\mathrm{KL},\beta}(\nu) \left(1 + \sqrt{1 + (\Delta_{\max}/\varepsilon)^2}\right)$$

which is $\mathcal{O}(\max{\{T_{\mathrm{KL}}^{\star}(\nu), T_{\mathrm{TV}}^{\star}(\nu)/\varepsilon})$ for most instances.

AdaP-TT* algorithm: modified private transportation costs.

Marc Jourdan

Differentially Private Best-Arm Identification

Empirical stopping time ($\delta = 0.01$) (left) $\mu_1 = (0.95, 0.9, 0.9, 0.9, 0.5)$ and (right) $\mu_2 = (0.75, 0.7, 0.7, 0.7, 0.7)$.

Differentially Private Best Arm Identification:

- \bowtie ε -local and ε -global trust models,
- Iower bounds on the expected sample complexity,
- matching upper bounds for modified TTUCB.

Perspectives:

- other trust models, e.g. shuffle DP,
- other DP settings, e.g. (ε, δ) -DP or Rény-DP.

- Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407.
- Garivier, A. and Kaufmann, E. (2016). Optimal best arm identification with fixed confidence. In *Proceedings* of the 29th Conference On Learning Theory.
- Jourdan, M. and Degenne, R. (2023). Non-asymptotic analysis of a ucb-based top two algorithm. *Thirty-Seventh Conference on Neural Information Processing Systems*.