Differentially Private Best-Arm Identification

Achraf Azize, **Marc Jourdan**, Aymen Al Marjani, Debabrota Basu

July 1, 2024

U Université

Phase III clinical trials

Goal: Identify a treatment with a high efficiency.

Phase III clinical trials

Goal: Identify a treatment with a high efficiency.

Setting: Pure exploration for stochastic multi-armed bandits.

☞ Sequential hypothesis testing with adaptive data collection.

Sequential decision making under uncertainty

After treating $n - 1$ patients, the physician has **■** a quessed answer for a good treatment $\hat{i}_n \in [K]$.

As the n -th patient enters, the physician selects **■** a treatment $I_n \in [K]$ for administration.

Then, it observes a realization $X_n \sim \nu_I$ with $\nu_i = \mathcal{B}(\mu_i)$.

$$
(i_n)_{n>K}
$$
\n
$$
(I_n)_{n\geq 1}
$$
\n
$$
(K_n)_{n\geq 1}
$$
\n
$$
(K_n)
$$

Best-Arm Identification (BAI)

K arms: arm $i \in [K]$ with $\nu_i = \mathcal{B}(\mu_i) \in \mathcal{D}$ where $\mu_i \in (0,1)$.

Goal: identify the unique **best arm** $i^{\star} = \arg \max_{i \in [K]} \mu_i$.

Best-Arm Identification (BAI)

K arms: arm $i \in [K]$ with $\nu_i = \mathcal{B}(\mu_i) \in \mathcal{D}$ where $\mu_i \in (0,1)$.

Goal: identify the unique **best arm** $i^{\star} = \arg \max_{i \in [K]} \mu_i$.

Algorithm: at time n ,

- *Recommendation rule*: recommend a candidate answer \hat{i}_r .
- *Stopping rule*: dictate when to stop sampling .
- Sampling rule: pull an arm I_n and observe $X_n \sim \nu_{I_n}$.

Best-Arm Identification (BAI)

K arms: arm $i \in [K]$ with $\nu_i = \mathcal{B}(\mu_i) \in \mathcal{D}$ where $\mu_i \in (0,1)$.

Goal: identify the unique **best arm** $i^{\star} = \arg \max_{i \in [K]} \mu_i$.

Algorithm: at time n ,

- *Recommendation rule*: recommend a candidate answer \hat{i}_n .
- *Stopping rule*: dictate when to stop sampling .
- Sampling rule: pull an arm I_n and observe $X_n \sim \nu_{I_n}$.

Fixed-confidence: given a confidence pair δ , define a δ -correct stopping time τ_δ , i.e. $\mathbb{P}_\nu(\tau_\delta<+\infty,\hat{\imath}_{\tau_\delta}\neq i^\star)\leq \delta$.

EXECUTE: Minimize the **expected sample complexity** $\mathbb{E}_{\nu}[\tau_{\delta}]$.

Lower bound on the expected sample complexity

[\(Garivier and Kaufmann, 2016\)](#page-28-0) For all δ -correct algorithm,

$$
\forall \nu \in \mathcal{D}^K, \quad \liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \geq T_{\text{KL}}^{\star}(\nu) ,
$$

Lower bound on the expected sample complexity

[\(Garivier and Kaufmann, 2016\)](#page-28-0) For all δ -correct algorithm,

$$
\forall \nu \in \mathcal{D}^K, \quad \liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \geq T_{\text{KL}}^{\star}(\nu) ,
$$

where the inverse of the **characteristic time** is

$$
T_{\text{KL}}^{\star}(\nu)^{-1} = \max_{w \in \Delta_K} \min_{j \neq i^{\star}} C_{\text{KL}}(i^{\star}, j; \nu, w) ,
$$

with $C_{\text{KL}}(i, j; \nu, w) \approx \mathbb{1} (\mu_i > \mu_j) \frac{2(\mu_i - \mu_j)^2}{1/w_i + 1/w_j} .$

Lower bound on the expected sample complexity

[\(Garivier and Kaufmann, 2016\)](#page-28-0) For all δ -correct algorithm,

$$
\forall \nu \in \mathcal{D}^K, \quad \liminf_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \geq T_{\text{KL}}^{\star}(\nu) ,
$$

where the inverse of the **characteristic time** is

$$
T_{\text{KL}}^{\star}(\nu)^{-1} = \max_{w \in \Delta_K} \min_{j \neq i^{\star}} C_{\text{KL}}(i^{\star}, j; \nu, w),
$$

with
$$
C_{\text{KL}}(i, j; \nu, w) \approx \mathbb{1} \left(\mu_i > \mu_j\right) \frac{2(\mu_i - \mu_j)^2}{1/w_i + 1/w_j}
$$

Algorithms: Track-and-Stop, online optimization, **Top Two**.

.

TTUCB [\(Jourdan and Degenne, 2023\)](#page-28-1)

■ Recommend the empirical best arm $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$.

TTUCB [\(Jourdan and Degenne, 2023\)](#page-28-1)

- **■** Recommend the empirical best arm $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$.
- ☞ Generalized likelihood ratio (**GLR**) stopping rule

$$
\tau_{\delta} = \inf \{ n \in \mathbb{N} \mid \min_{j \neq \hat{\imath}_n} C_{\text{KL},n}(\hat{\imath}_n, j) > c(n - 1, \delta) \},
$$

with $C_{\text{KL},n}(i, j) = C_{\text{KL}}(i, j; \nu_n, N_n)$ and $c(n, \delta) \approx \log(1/\delta) + \mathcal{O}(\log n)$.

TTUCB [\(Jourdan and Degenne, 2023\)](#page-28-1)

- **Recommend the empirical best arm** $\hat{i}_n = \arg \max_{i \in [K]} \mu_{n,i}$.
- ☞ Generalized likelihood ratio (**GLR**) stopping rule

$$
\tau_{\delta} = \inf \{ n \in \mathbb{N} \mid \min_{j \neq \hat{\imath}_n} C_{\mathrm{KL},n}(\hat{\imath}_n, j) > c(n - 1, \delta) \},
$$

with $C_{KL,n}(i, j) = C_{KL}(i, j; \nu_n, N_n)$ and $c(n, \delta) \approx \log(1/\delta) + \mathcal{O}(\log n)$.

■ Sample $I_n \in \{B_n, C_n\}$ uniformly at random where

UCB leader:
$$
B_n = \underset{i \in [K]}{\arg \max} \left\{ \mu_{n,i} + \sqrt{\log(n)/N_{n,i}} \right\},
$$

TC challenge: $C_n = \underset{j \neq B_n}{\arg \min} C_{\text{KL},n}(B_n, j).$

Differential privacy

 \triangle Rewards may reveal sensitive information about individuals !

Differential privacy

 \triangle Rewards may reveal sensitive information about individuals !

Definition [\(Dwork and Roth, 2014\)](#page-28-2)

A randomised algorithm A satisfies ε -DP if for any two neighbouring datasets d and d' that differ only in one row and for all sets of output $\cal O$,

$$
\mathbb{P}(\mathcal{A}(d) \in \mathcal{O}) \leq \exp(\varepsilon) \mathbb{P}(\mathcal{A}(d') \in \mathcal{O}) \; .
$$

Trust models for differentially private BAI

ε**-local** differential privacy:

 \mathbb{R} A has only access to private rewards.

ε**-global** differential privacy:

 \mathbb{R} A has access to the true rewards, but its output is private.

Local Differentially Private Best Arm Identification

Theorem

For all δ*-correct* ε*-local DP algorithm and all instance* ν *,*

$$
\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max \left\{ T_{\text{KL}}^{\star}(\nu), c(\varepsilon)^{-1} T_{\text{TV}^2}^{\star}(\nu) \right\} \log \frac{1}{2.4\delta},
$$

with
$$
c(\varepsilon) = \min\{4, e^{2\varepsilon}\}(e^{\varepsilon} - 1)^2
$$
 and $T^{\star}_{\text{TV}}(\nu) = T^{\star}_{\text{KL}}(\nu_G)/2$.

Local Differentially Private Best Arm Identification

Theorem

For all δ*-correct* ε*-local DP algorithm and all instance* ν *,*

$$
\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max \left\{ T_{\text{KL}}^{\star}(\nu), c(\varepsilon)^{-1} T_{\text{TV}^2}^{\star}(\nu) \right\} \log \frac{1}{2.4\delta} ,
$$

with
$$
c(\varepsilon) = \min\{4, e^{2\varepsilon}\}(e^{\varepsilon} - 1)^2
$$
 and $T^{\star}_{\text{TV}^2}(\nu) = T^{\star}_{\text{KL}}(\nu_G)/2$.

Two hardness regimes depending on ε and the environment ν .

$$
\text{Low-privacy: } c(\varepsilon) > \frac{T^*_{\text{TV2}}(\nu)}{T^*_{\text{KL}}(\nu)} \text{ . } \text{Privatey is for ``free''} \\ \text{Eq. } \text{High-privacy: } c(\varepsilon) > \frac{T^*_{\text{TV2}}(\nu)}{T^*_{\text{KL}}(\nu)} \text{ . } \text{Privatey scales the cost by } 1/\varepsilon^2
$$

CTB-TT: ε-local DP version of TTUCB

- **O** Private estimator $\widetilde{\mu}_n$ based on randomised response:
- **☞ Observe private rewards** $\widetilde{X}_n \sim \mathcal{B}\left(\frac{X_n(e^\varepsilon-1)+1}{e^\varepsilon+1}\right)$ $\frac{(e^{\varepsilon}-1)+1}{e^{\varepsilon}+1}\Big)$ instead of X_n .
- Θ **Plug** $\widetilde{\mu}_n$ in TTUCB.

CTB-TT: ε-local DP version of TTUCB

O Private estimator $\widetilde{\mu}_n$ based on randomised response:

$$
\text{ is } \text{ Observe private rewards } \widetilde{X}_n \sim \mathcal{B}\left(\frac{X_n(e^\varepsilon-1)+1}{e^\varepsilon+1}\right) \text{ instead of } X_n \text{ .}
$$

 Θ **Plug** $\widetilde{\mu}_n$ in TTUCB.

Theorem

CTB-TT is ε*-local DP,* δ*-correct and satisfies*

$$
\limsup_{\delta \to 0} \frac{\mathbb{E}_\nu[\tau_\delta]}{\log(1/\delta)} \le \left(1 + \frac{2}{e^\varepsilon - 1}\right)^2 T^{\star}_{\mathrm{TV}^2}(\nu) \ .
$$

Empirical stopping time ($\delta = 0.01$) (left) $u_1 = (0.95, 0.9, 0.9, 0.9, 0.5)$ and (right) $u_2 = (0.75, 0.7, 0.7, 0.7, 0.7)$.

Global Differentially Private Best Arm Identification

Theorem

For all δ*-correct* ε*-global DP algorithm and all instance* ν *,*

$$
\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max \{ T_{\text{KL}}^{\star}(\nu), T_{\text{TV}}^{\star}(\nu) / (6\varepsilon) \} \log \frac{1}{2.4\delta} ,
$$

where
$$
T_{\text{KL}}^{\star}(\nu) \approx \sum_{i \neq i^{\star}} (\mu_{i^{\star}} - \mu_i)^{-2}
$$
 and $T_{\text{TV}}^{\star}(\nu) \approx \sum_{i \neq i^{\star}} (\mu_{i^{\star}} - \mu_i)^{-1}$.

Global Differentially Private Best Arm Identification

Theorem

For all δ*-correct* ε*-global DP algorithm and all instance* ν *,*

$$
\mathbb{E}_{\nu}[\tau_{\delta}] \ge \max \{ T_{\text{KL}}^{\star}(\nu), T_{\text{TV}}^{\star}(\nu) / (6\varepsilon) \} \log \frac{1}{2.4\delta} ,
$$

where
$$
T_{\text{KL}}^*(\nu) \approx \sum_{i \neq i^*} (\mu_{i^*} - \mu_i)^{-2}
$$
 and $T_{\text{TV}}^*(\nu) \approx \sum_{i \neq i^*} (\mu_{i^*} - \mu_i)^{-1}$.

Two hardness regimes depending on ε and the environment ν .

 \blacksquare Low-privacy regime: $6\varepsilon > \frac{T^*_{\text{TV}}(\nu)}{T^*_{\text{TV}}(\nu)}$ $\frac{T_{\text{TV}}(\nu)}{T_{\text{KL}}^{\star}(\nu)}$. Privacy is for "free".

■ High-privacy regime: 6ε < $\frac{T_{TV}^{\star}(v)}{T^{\star}(v)}$ $\frac{T_{\text{TV}}(\nu)}{T_{\text{KL}}^*(\nu)}$. Privacy is "dominating".

AdaP-TT: ε -global DP version of TTUCB

- **O** Private estimator with Laplace noise: $\widetilde{\mu}_n = \mu_n + \text{Lap} \left(\frac{1}{\varepsilon N} \right)$ ε N_n $\big)$.
- **Doubling and forgetting, i.e. phases per arm.**
- Θ **Plug** $\widetilde{\mu}_n$ in TTUCB.
- **Example 13** Private stopping threshold: $c(n, \delta) \approx \log(1/\delta) + \frac{1}{n\varepsilon^2} \log(1/\delta)^2$.

AdaP-TT: ε-global DP version of TTUCB

O Private estimator with Laplace noise: $\widetilde{\mu}_n = \mu_n + \text{Lap} \left(\frac{1}{\varepsilon N} \right)$ ε N_n $\big)$.

☞ **Doubling and forgetting**, i.e. phases per arm.

- Θ **Plug** $\widetilde{\mu}_n$ in TTUCB.
- **Example 13** Private stopping threshold: $c(n, \delta) \approx \log(1/\delta) + \frac{1}{n\varepsilon^2} \log(1/\delta)^2$.

Theorem

AdaP-TT is ε*-global DP,* δ*-correct and satisfies*

$$
\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \le 4T^{\star}_{\text{KL},\beta}(\nu) \left(1 + \sqrt{1 + (\Delta_{\max}/\varepsilon)^2}\right)
$$

which is $\mathcal{O}\left(\max\left\{T^\star_{\text{KL}}(\nu), T^\star_{\text{TV}}(\nu)/\varepsilon\right\}\right)$ for most instances.

,

AdaP-TT: ε -global DP version of TTUCB

O Private estimator with Laplace noise: $\widetilde{\mu}_n = \mu_n + \text{Lap} \left(\frac{1}{\varepsilon N} \right)$ ε N_n $\big)$.

☞ **Doubling and forgetting**, i.e. phases per arm.

- Θ **Plug** $\widetilde{\mu}_n$ in TTUCB.
- **Example 13** Private stopping threshold: $c(n, \delta) \approx \log(1/\delta) + \frac{1}{n\varepsilon^2} \log(1/\delta)^2$.

Theorem

AdaP-TT is ε*-global DP,* δ*-correct and satisfies*

$$
\limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau_{\delta}]}{\log(1/\delta)} \le 4T^{\star}_{\mathrm{KL},\beta}(\nu) \left(1 + \sqrt{1 + (\Delta_{\max}/\varepsilon)^2}\right) ,
$$

which is $\mathcal{O}\left(\max\left\{T^\star_{\text{KL}}(\nu), T^\star_{\text{TV}}(\nu)/\varepsilon\right\}\right)$ for most instances.

AdaP-TT $*$ algorithm: modified private transportation costs.

Empirical stopping time ($\delta = 0.01$) (left) $u_1 = (0.95, 0.9, 0.9, 0.9, 0.5)$ and (right) $\mu_2 = (0.75, 0.7, 0.7, 0.7, 0.7)$.

Differentially Private Best Arm Identification:

- \mathbb{F} ε -local and ε -global trust models,
- ☞ lower bounds on the expected sample complexity,
- matching upper bounds for modified TTUCB.

Perspectives:

- o other trust models, e.g. shuffle DP,
- o other DP settings, e.g. (ε, δ) -DP or Rény-DP.

- Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. *Foundations and Trends® in Theoretical Computer Science*, 9(3–4):211–407.
- Garivier, A. and Kaufmann, E. (2016). Optimal best arm identification with fixed confidence. In *Proceedings of the 29th Conference On Learning Theory*.
- Jourdan, M. and Degenne, R. (2023). Non-asymptotic analysis of a ucb-based top two algorithm. *Thirty-Seventh Conference on Neural Information Processing Systems*.