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Phase III clinical trials

µ1 µ2 µ3 µ4

Goal: Identify a treatment with a high efficiency.

Setting: Pure exploration for stochastic multi-armed bandits.

☞ Sequential hypothesis testing with adaptive data collection.
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Sequential decision making under uncertainty

After treating n− 1 patients, the physician has
☞ a guessed answer for a good treatment ı̂n ∈ [K] .

As the n-th patient enters, the physician selects
☞ a treatment In ∈ [K] for administration.

Then, it observes a realization Xn ∼ νIn with νi = B(µi) .

(̂ın)n>K · · ·

(In)n≥1 · · ·
(Xn)n≥1 · · ·
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Best-Arm Identification (BAI)

K arms: arm i ∈ [K] with νi = B(µi) ∈ D where µi ∈ (0, 1) .

Goal: identify the unique best arm i⋆ = argmaxi∈[K] µi .

Algorithm: at time n ,
• Recommendation rule: recommend a candidate answer ı̂n .
• Stopping rule: dictate when to stop sampling .
• Sampling rule: pull an arm In and observe Xn ∼ νIn .

Fixed-confidence: given a confidence pair δ , define a δ-correct
stopping time τδ , i.e. Pν(τδ < +∞, ı̂τδ ̸= i⋆) ≤ δ .

☞ Minimize the expected sample complexity Eν [τδ] .
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Lower bound on the expected sample complexity

(Garivier and Kaufmann, 2016) For all δ-correct algorithm,

∀ν ∈ DK , lim inf
δ→0

Eν [τδ]

log(1/δ)
≥ T ⋆

KL(ν) ,

where the inverse of the characteristic time is

T ⋆
KL(ν)

−1 = max
w∈△K

min
j ̸=i⋆

CKL(i
⋆, j; ν, w) ,

with CKL(i, j; ν, w) ≈ 1 (µi > µj)
2(µi − µj)

2

1/wi + 1/wj
.

Algorithms: Track-and-Stop, online optimization, Top Two.
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TTUCB (Jourdan and Degenne, 2023)

☞ Recommend the empirical best arm ı̂n = argmaxi∈[K] µn,i .

☞ Generalized likelihood ratio (GLR) stopping rule

τδ = inf{n ∈ N | min
j ̸=ı̂n

CKL,n(̂ın, j) > c(n− 1, δ)} ,

with CKL,n(i, j) = CKL(i, j; νn, Nn) and c(n, δ) ≈ log(1/δ) +O(log n) .

☞ Sample In ∈ {Bn, Cn} uniformly at random where

UCB leader: Bn = argmax
i∈[K]

{
µn,i +

√
log(n)/Nn,i

}
,

TC challenger: Cn = argmin
j ̸=Bn

CKL,n(Bn, j) .
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Differential privacy

△! Rewards may reveal sensitive information about individuals !

Definition (Dwork and Roth, 2014)
A randomised algorithm A satisfies ε-DP if for any two neighbouring
datasets d and d′ that differ only in one row and for all sets of output O ,

P(A(d) ∈ O) ≤ exp(ε)P (A (d′) ∈ O) .

Dataset
Randomized
Algorithm

Output
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Trust models for differentially private BAI

Dataset
Randomized
Algorithm

Output

ε-local DP ε-global DP

ε-local differential privacy:
☞ A has only access to private rewards.

ε-global differential privacy:
☞ A has access to the true rewards, but its output is private.

Marc Jourdan Differentially Private Best-Arm Identification July 1, 2024 8 / 15



Local Differentially Private Best Arm Identification

Theorem
For all δ-correct ε-local DP algorithm and all instance ν ,

Eν [τδ] ≥ max
{
T ⋆
KL(ν), c(ε)

−1T ⋆
TV2(ν)

}
log

1

2.4δ
,

with c(ε) = min{4, e2ε}(eε − 1)2 and T ⋆
TV2(ν) = T ⋆

KL(νG)/2 .

Two hardness regimes depending on ε and the environment ν .

☞ Low-privacy : c(ε) >
T ⋆
TV2 (ν)

T ⋆
KL(ν)

. Privacy is for “free”

☞ High-privacy: c(ε) >
T ⋆
TV2 (ν)

T ⋆
KL(ν)

. Privacy scales the cost by 1/ε2
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CTB-TT: ε-local DP version of TTUCB

❶ Private estimator µ̃n based on randomised response:

☞ Observe private rewards X̃n ∼ B
(

Xn(eε−1)+1
eε+1

)
instead of Xn .

❷ Plug µ̃n in TTUCB.

Theorem
CTB-TT is ε-local DP, δ-correct and satisfies

lim sup
δ→0

Eν [τδ]

log(1/δ)
≤

(
1 +

2

eε − 1

)2

T ⋆
TV2(ν) .
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Empirical stopping time (δ = 0.01)
(left) µ1 = (0.95, 0.9, 0.9, 0.9, 0.5) and (right) µ2 = (0.75, 0.7, 0.7, 0.7, 0.7).
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Global Differentially Private Best Arm Identification

Theorem
For all δ-correct ε-global DP algorithm and all instance ν ,

Eν [τδ] ≥ max {T ⋆
KL(ν), T

⋆
TV(ν)/(6ε)} log

1

2.4δ
,

where T ⋆
KL(ν) ≈

∑
i ̸=i⋆(µi⋆ − µi)

−2 and T ⋆
TV(ν) ≈

∑
i ̸=i⋆(µi⋆ − µi)

−1 .

Two hardness regimes depending on ε and the environment ν .

☞ Low-privacy regime: 6ε > T ⋆
TV(ν)

T ⋆
KL(ν)

. Privacy is for “free”.

☞ High-privacy regime: 6ε < T ⋆
TV(ν)

T ⋆
KL(ν)

. Privacy is “dominating”.
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AdaP-TT: ε-global DP version of TTUCB
❶ Private estimator with Laplace noise: µ̃n = µn + Lap

(
1

εNn

)
.

☞ Doubling and forgetting, i.e. phases per arm.

❷ Plug µ̃n in TTUCB.
☞ Private stopping threshold: c(n, δ) ≈ log(1/δ) + 1

nε2
log(1/δ)2 .

Theorem
AdaP-TT is ε-global DP, δ-correct and satisfies

lim sup
δ→0

Eν [τδ]

log(1/δ)
≤ 4T ⋆

KL,β(ν)
(
1 +

√
1 + (∆max/ε)2

)
,

which is O (max {T ⋆
KL(ν), T

⋆
TV(ν)/ε}) for most instances.

AdaP-TT⋆ algorithm: modified private transportation costs.
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Empirical stopping time (δ = 0.01)
(left) µ1 = (0.95, 0.9, 0.9, 0.9, 0.5) and (right) µ2 = (0.75, 0.7, 0.7, 0.7, 0.7).
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Conclusion

Differentially Private Best Arm Identification:
☞ ε-local and ε-global trust models,
☞ lower bounds on the expected sample complexity,
☞ matching upper bounds for modified TTUCB.

Perspectives:
other trust models, e.g. shuffle DP,
other DP settings, e.g. (ε, δ)-DP or Rény-DP.
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