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Outline

Goal: Identify the item having the highest average return.

Common assumption: Gaussian with known variance.

4! Too restrictive !

This paper:

Unknown variance !

Two approaches to deal with unknown variances:
+ Plug in the empirical variance,
+ Adapt the transportation costs.
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Best-arm identification (BAI)

K arms, νa ∈ D distribution of arm a ∈ [K]

+ νa = N (µa, σ
2
a) where (µa, σ

2
a) are unknown.

Goal: identify unique a? = argmaxa µa with confidence 1− δ.

Algorithm: at time t,
Sequential test: if the stopping time τδ is reached, then return the
candidate answer ât.
Sampling rule: pull arm at and observe Xt ∼ νat .

Objective: Minimize Eν [τδ] for δ-correct algorithms

Pν [τδ < +∞, âτδ 6= a?] ≤ δ .
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Sample complexity lower bound
Garivier and Kaufmann (2016): For all δ-correct algorithm,

∀ν ∈ DK , lim inf
δ→0

Eν [τδ]

log(1/δ)
≥ T ?(µ, σ2) ,

where T ?(µ, σ2)−1 = maxw∈4K mina6=a? C(a
?, a;w) and

2C(a?, a;w) = inf
λ∈(µa,µa? )

∑
b∈{a?,a}

wb log

(
1 +

(µb − λ)2

σ2
b

)
.

Known variance

2Cσ2(a?, a;w) = inf
λ∈(µa,µa? )

∑
b∈{a?,a}

wb
(µb − λ)2

σ2
b

=
(µa? − µa)2

σ2
a?/wa? + σ2

a/wa
.
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How to obtain a δ-correct sequential test ?

+ recommend the empirical best arm

ât = argmax
a∈[K]

µt,a ,

with Nt,a =
∑

s∈[t] 1 (as = a) and MLE (µt, σ
2
t ) defined as

µt,a =
1

Nt,a

∑
s∈[t]

1 (as = a)Xs and σ2
t,a =

1

Nt,a

∑
s∈[t]

1 (as = a) (Xs−µt,a)2 .

+ calibrated GLR and EV-GLR stopping rules.
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Stopping rules
GLR stopping rule [Adapt]

τδ = inf{t ∈ N | ∀a 6= ât, Za(t) > cât,a(Nt, δ)} ,

2Za(t) = inf
λ∈[µt,a,µt,ât ]

∑
b∈{ât,a}

Nt,b log

(
1 +

(µt,b − λ)2

σ2
t,b

)
,

where (ca,b)a6=b is a family of thresholds.

EV-GLR stopping rule [Plug in]

τEV
δ = inf{t ∈ N | ∀a 6= ât, Z

EV
a (t) > cEV

ât,a(Nt, δ)} ,

2ZEV
a (t) =

(µt,ât − µt,a)2

σ2
t,ât
/Nt,ât + σ2

t,a/Nt,a

,

where (cEV
a,b)a6=b is a family of thresholds.
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Calibration of the stopping thresholds

Example: GLR stopping rule [Adapt]
+ Calibration by time-uniform concentration: with probability 1− δ,

∀t ∈ N,∀a 6= a?,
∑

b∈{a,a?}

Nt,b log

(
1 +

(µt,b − µb)2

σ2
t,b

)
≤ 2ca,a?(Nt, δ) .

Per-arm concentration:
+ Student thresholds, quantiles-based as (µt,b − µb)/σt,b ∼ TNt,a−1.

+ Box thresholds, combining confidence regions on µt,a and σ2
t,a.
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Concentration of the empirical variances

Theorem
With probability 1− δ,

∀t ∈ N, σ2
t+1/σ

2 − 1 . 2 (log(1/δ) + log log t) /t ,

∀t ≥ 2 log(1/δ)

log log(1/δ)
, σ2

t+1/σ
2 − 1 & −2 (log(1/δ) + log log t) /t .

Proof idea: “peeling” method on sub-Exp processes (Howard et al., 2020).
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Beyond box: pairwise concentration

+ KL thresholds

Theorem
With probability 1− δ,

∀t ∈ N,∀a 6= a?,
∑

b∈{a,a?}

Nt,bKL((µt,b, σ
2
t,b), (µb, σ

2
b )) ≤ ca,a?(Nt, δ) ,

where ca,b(N, δ) = +∞ if min{Na, Nb} . 2 log(1/δ)
log log(1/δ)

, else

ca,b(N, δ) ≈ log(1/δ) +
∑
c∈{a,b}

log logNc .

Proof idea: “peeling” with a crude per-arm concentration to do a quadratic
approximation of KL, hence obtaining concentration on the sum of KL.
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Best of Both (BoB) thresholds

Theorem
The family of BoB thresholds is δ-correct for the GLR stopping rule. It is
defined as ca,b(N, δ) = +∞ if min{Na, Nb} . 2 log(1/δ)

log log(1/δ)
, else solution of

maximize
1

2

∑
c∈{a,b}

Nc log (1 + yc) under the constraints

∀c ∈ {a, b}, yc ≥ 0, max{xcyc, 1− xc} .
2

t
(log(1/δ) + log logNc),

1

2

∑
c∈{a,b}

Nc ((1 + yc)xc − 1− log xc) . log(1/δ) +
∑
c∈{a,b}

log logNc .

Proof idea: combine per-arm and pairwise concentration (Box and KL).
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Simulations

µ = (0,−0.2), σ2 = (1, 0.5), uniform sampling.

Figure: Thresholds for the GLR stopping rule as a function of (a) log (1/δ) for
t = 5000 and (b) t for δ = 0.01.
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Sampling rule wrappers

Example: EB-TCI (Jourdan et al., 2022)
+ sample leader BEB

t+1 = ât with probability 1/2, else sample challenger

[Adapt] CTCI
t+1 = argmin

a6=ât
{Za(t) + logNt,a} ,

[Plug in] CEVTCI
t+1 = argmin

a6=ât
{ZEV

a (t) + logNt,a} ,

Other BAI algorithms studied with the [Adapt]/[Plug in] wrappers:
Track-and-Stop (Garivier and Kaufmann, 2016),
DKM (Degenne et al., 2019) [empirically],
FWS (Wang et al., 2021) [empirically].
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Sample complexity upper bound

Theorem ([Adapt])
Using the GLR stopping with an asymptotically tight family of thresholds,
EB-TCI satisfies that, for instances ν ∈ DK having distinct means,

lim sup
δ→0

Eν [τδ]
log(1/δ)

≤ T ?1/2(ν) .

Asymptotically tight threshold, i.e. c(·, δ) ∼δ→0 log(1/δ).
+ KL and BoB thresholds are asymptotically tight (not Student and Box).

Theorem ([Plug in])
For all asymptotically tight family of thresholds (ca,b)a6=b and problem
independent constant α > 0, combining EB-EVTCI with the EV-GLR
stopping rule using (αca,b)a6=b yields an algorithm which is not δ-correct.
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Empirical results (δ = 0.01)

Figure: Empirical stopping time on random Gaussian instances (K = 10):
(µ1, σ

2
1) = (0, 1) and −µa ∼ U([0.2, 1.0]) and σ2a ∼ U([0.1, 10]) for all a 6= 1.
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Conclusion

Two approaches to deal with unknown variances:
+ Plug in the empirical variance,
+ Adapt the transportation costs.

Two stopping rules, GLR and EV-GLR,
+ calibrated with time-uniform concentration.

Two sampling rule wrappers, e.g. EB-TCI.

The impact of not knowning the variance is rather small !
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Questions ?
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Appendix
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Empirical variance: time-uniform concentration

Concentration on σ2t+1 after t+ 1 i.i.d. samples
With probability 1− δ,

∀t ∈ N, σ2
t+1/σ

2 ≤ W−1(1 + 2g(t, δ)/t)− 1/t with W−1(x) ≈ x+ log x ,

∀t ≥ t0(δ), σ
2
t+1/σ

2 ≥ W 0(1 + 2g(t, δ)/t)− 1/t with W 0(x) ≈ e−x+e
−x
,

where g(t, δ) ≈ log(1/δ) + log log t and t0(δ) ≈ 2 log(1/δ)/ log log(1/δ).
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